1
|
|
|
import logging |
2
|
|
|
import numpy as np |
3
|
|
|
import matplotlib.pyplot as plt |
4
|
|
|
from matplotlib.ticker import MultipleLocator |
5
|
|
|
from matplotlib.patches import Rectangle |
6
|
|
|
|
7
|
|
|
logger = logging.getLogger(__name__) |
8
|
|
|
|
9
|
|
|
recall_scoring_labels = ['Correct', 'Fragmenting', 'Underfill-B', 'Underfill-E', 'Deletion'] |
10
|
|
|
fpr_scoring_labels = ['Correct', 'Merging', 'Overfill-B', 'Overfill-E', 'Insertion'] |
11
|
|
|
recall_scoring_indices = {'C': 0, 'D': 4, 'F': 1, 'U': 2, 'u': 3} |
12
|
|
|
fpr_scoring_indices = {'C': 0, 'I': 4, 'M': 1, 'O': 2, 'o': 3} |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def draw_per_class_recall(classes, class_colors, recall_array, filename=None): |
16
|
|
|
"""Draw recall array |
17
|
|
|
""" |
18
|
|
|
recall_np = np.empty((len(classes), len(recall_scoring_labels)), |
19
|
|
|
dtype=np.float) |
20
|
|
|
for i, row in enumerate(recall_array): |
21
|
|
|
for key in recall_scoring_indices: |
22
|
|
|
recall_np[i, recall_scoring_indices[key]] = row[key] |
23
|
|
|
recall_np /= np.sum(recall_np, axis=1, keepdims=True) |
24
|
|
|
|
25
|
|
|
ind = np.arange(len(classes)) |
26
|
|
|
width = 0.35 |
27
|
|
|
bottom = np.zeros((len(classes),)) |
28
|
|
|
bar_array = [] |
29
|
|
|
for i in range(len(recall_scoring_labels)): |
30
|
|
|
bar_array.append(plt.bar(ind, recall_np[:, i], width, |
31
|
|
|
alpha=(1-1/len(recall_scoring_labels) * i), |
32
|
|
|
color=class_colors, bottom=bottom)[0]) |
33
|
|
|
bottom += recall_np[:, i] |
34
|
|
|
plt.ylabel('Percentage') |
35
|
|
|
plt.xlabel('Classes') |
36
|
|
|
plt.xticks(ind, classes, rotation='vertical') |
37
|
|
|
plt.legend(bar_array, recall_scoring_labels) |
38
|
|
|
plt.show() |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def _get_bg_class_id(classes, background_class): |
42
|
|
|
# Verify Background Class first |
43
|
|
|
if background_class is not None: |
44
|
|
|
bg_class_id = classes.index(background_class) |
45
|
|
|
else: |
46
|
|
|
bg_class_id = -1 |
47
|
|
|
return bg_class_id |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def _get_metric_label_dict(metric_name='recall'): |
51
|
|
|
if metric_name == 'recall': |
52
|
|
|
metric_labels = recall_scoring_labels |
53
|
|
|
metric_indices = recall_scoring_indices |
54
|
|
|
else: |
55
|
|
|
metric_labels = fpr_scoring_labels |
56
|
|
|
metric_indices = fpr_scoring_indices |
57
|
|
|
return metric_labels, metric_indices |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def _gether_per_class_metrics(methods, classes, metric_arrays, as_percent, metric_labels, metric_indices): |
61
|
|
|
"""Prepare metrics for bar plot |
62
|
|
|
""" |
63
|
|
|
# Gather data for bar plot |
64
|
|
|
plot_metric_arrays = [] |
65
|
|
|
for j in range(len(methods)): |
66
|
|
|
cur_metric = np.empty((len(classes), len(metric_labels)), |
67
|
|
|
dtype=np.float) |
68
|
|
|
for i, row in enumerate(metric_arrays[j]): |
69
|
|
|
for key in metric_indices: |
70
|
|
|
cur_metric[i, metric_indices[key]] = row[key] |
71
|
|
|
# As percent |
72
|
|
|
if as_percent: |
73
|
|
|
cur_metric /= np.sum(cur_metric, axis=1, keepdims=True) |
74
|
|
|
# Append the metric for current methods |
75
|
|
|
plot_metric_arrays.append(cur_metric) |
76
|
|
|
return plot_metric_arrays |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def _compare_per_class_metrics(methods, classes, class_colors, metric_arrays, |
80
|
|
|
group_by='methods', filename=None, background_class=None, |
81
|
|
|
as_percent=True, metric_name='recall'): |
82
|
|
|
"""Compare per-class metrics between methods using bar-graph |
83
|
|
|
""" |
84
|
|
|
metric_labels, metric_indices = _get_metric_label_dict(metric_name=metric_name) |
85
|
|
|
bg_class_id = _get_bg_class_id(classes, background_class) |
86
|
|
|
plot_metric_arrays = _gether_per_class_metrics(methods, classes, metric_arrays, as_percent, |
87
|
|
|
metric_labels, metric_indices) |
88
|
|
|
# Prepare Data and x-label |
89
|
|
|
xtick_labels = [] |
90
|
|
|
bar_colors = [] |
91
|
|
|
if bg_class_id < 0: |
92
|
|
|
plot_data = np.empty((len(methods) * len(classes), len(metric_labels))) |
93
|
|
|
else: |
94
|
|
|
plot_data = np.empty((len(methods) * (len(classes) - 1), len(metric_labels))) |
95
|
|
|
# Fill plot data with values |
96
|
|
|
if group_by == 'methods': |
97
|
|
|
num_base_axis = len(methods) |
98
|
|
|
if bg_class_id < 0: |
99
|
|
|
num_sec_axis = len(classes) |
100
|
|
|
else: |
101
|
|
|
num_sec_axis = len(classes) - 1 |
102
|
|
|
for j in range(len(classes)): |
103
|
|
|
if bg_class_id < 0 or j < bg_class_id: |
104
|
|
|
for i in range(len(methods)): |
105
|
|
|
bar_colors.append(class_colors[j]) |
106
|
|
|
xtick_labels.append(methods[i]) |
107
|
|
|
plot_data[j * num_base_axis + i, :] = plot_metric_arrays[i][j, :] |
108
|
|
|
elif j > bg_class_id: |
109
|
|
|
for i in range(len(methods)): |
110
|
|
|
bar_colors.append(class_colors[j]) |
111
|
|
|
xtick_labels.append(methods[i]) |
112
|
|
|
plot_data[(j-1) * num_base_axis + i, :] = plot_metric_arrays[i][j, :] |
113
|
|
|
else: |
114
|
|
|
if bg_class_id < 0: |
115
|
|
|
num_base_axis = len(classes) |
116
|
|
|
else: |
117
|
|
|
num_base_axis = len(classes) - 1 |
118
|
|
|
num_sec_axis = len(methods) |
119
|
|
|
for j in range(len(methods)): |
120
|
|
|
xtick_labels.append(methods[j]) |
121
|
|
|
for i in range(len(classes)): |
122
|
|
|
if bg_class_id < 0 or i < bg_class_id: |
123
|
|
|
bar_colors.append(class_colors[i]) |
124
|
|
|
plot_data[j * num_base_axis + i, :] = plot_metric_arrays[j][i, :] |
125
|
|
|
elif i > bg_class_id: |
126
|
|
|
bar_colors.append(class_colors[i]) |
127
|
|
|
plot_data[j * num_base_axis + i - 1, :] = plot_metric_arrays[j][i, :] |
128
|
|
|
# Calculate width and bar location |
129
|
|
|
width = 1/(num_base_axis + 1) |
130
|
|
|
ind = [] |
131
|
|
|
for i in range(num_sec_axis): |
132
|
|
|
for j in range(num_base_axis): |
133
|
|
|
ind.append(i + j * width + width) |
134
|
|
|
bottom = np.zeros((num_base_axis * num_sec_axis,)) |
135
|
|
|
# Set major and minor lines for y_axis |
136
|
|
|
if as_percent: |
137
|
|
|
minor_locator_value = 0.05 |
138
|
|
|
major_locator_value = 0.2 |
139
|
|
|
else: |
140
|
|
|
max_value = np.max(plot_data.sum(axis=1)) + 20 |
141
|
|
|
minor_locator_value = int(max_value/20) |
142
|
|
|
major_locator_value = int(max_value/5) |
143
|
|
|
# Set up x_label location |
144
|
|
|
xlabel_ind = [] |
145
|
|
|
if group_by == 'methods': |
146
|
|
|
xlabel_ind = [x + width/2 for x in ind] |
147
|
|
|
xlabel_rotation = 'vertical' |
148
|
|
|
else: |
149
|
|
|
xlabel_ind = [x + 0.5 for x in range(len(methods))] |
150
|
|
|
xlabel_rotation = 'horizontal' |
151
|
|
|
# Setup Figure |
152
|
|
|
fig, ax = plt.subplots() |
153
|
|
|
# Y-Axis |
154
|
|
|
minor_locator = MultipleLocator(minor_locator_value) |
155
|
|
|
major_locator = MultipleLocator(major_locator_value) |
156
|
|
|
ax.yaxis.set_minor_locator(minor_locator) |
157
|
|
|
ax.yaxis.set_major_locator(major_locator) |
158
|
|
|
ax.yaxis.grid(which="major", color='0.65', linestyle='-', linewidth=1) |
159
|
|
|
ax.yaxis.grid(which="minor", color='0.45', linestyle=' ', linewidth=1) |
160
|
|
|
# Plot Bar |
161
|
|
|
for i in range(len(metric_labels)): |
162
|
|
|
ax.bar(ind, plot_data[:, i], width, |
163
|
|
|
alpha=(1-1/len(metric_labels) * i), |
164
|
|
|
color=bar_colors, bottom=bottom) |
165
|
|
|
bottom += plot_data[:, i] |
166
|
|
|
if as_percent: |
167
|
|
|
plt.ylabel('Percentage') |
168
|
|
|
else: |
169
|
|
|
plt.ylabel('Count') |
170
|
|
|
plt.xlabel('Classes') |
171
|
|
|
plt.xticks(xlabel_ind, xtick_labels, rotation=xlabel_rotation, fontsize=6) |
172
|
|
|
# Prepare Legends |
173
|
|
|
patches = [] |
174
|
|
|
legend_labels = [] |
175
|
|
|
for i in range(len(metric_labels)): |
176
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color='0.3', alpha=(1-1/len(metric_labels) * i))) |
177
|
|
|
legend_labels.append(metric_labels[i]) |
178
|
|
|
for i in range(len(classes)): |
179
|
|
|
if i == bg_class_id: |
180
|
|
|
continue |
181
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color=class_colors[i])) |
182
|
|
|
legend_labels.append(classes[i]) |
183
|
|
|
plt.legend(patches, legend_labels, loc='center left', borderaxespad=0, bbox_to_anchor=(1.05, 0.5), |
184
|
|
|
prop={'size': 8}) |
185
|
|
|
plt.tight_layout() |
186
|
|
|
plt.title('Event-based Activity Analysis - %s' % metric_name) |
187
|
|
|
if filename is None: |
188
|
|
|
plt.show() |
189
|
|
|
else: |
190
|
|
|
plt.savefig(filename, bbox_inches='tight') |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def compare_per_class_recall(methods, classes, class_colors, recall_arrays, |
194
|
|
|
group_by='methods', filename=None, background_class=None, |
195
|
|
|
as_percent=True): |
196
|
|
|
"""Draw event.rst-based comparison between methods on Recall metric. |
197
|
|
|
|
198
|
|
|
Args: |
199
|
|
|
methods (:obj:`list` of :obj:`str`): List of names of different methods to be plotted. |
200
|
|
|
classes (:obj:`list` of :obj:`str`): List of target classes. |
201
|
|
|
class_colors (:obj:`list` of :obj:`str`): List of RGB color for corresponding classes in the ``classes`` list. |
202
|
|
|
recall_arrays (:obj:`list` of :obj:`numpy.ndarray`): List of recall arrays calculated for each methods. |
203
|
|
|
group_by (:obj:`str`): Group the bar graph of various 'methods' first or 'classes' first. Default to 'methods'. |
204
|
|
|
filename (:obj:`str`): The filename to save the plot. None if display on screen with pyplot. |
205
|
|
|
background_class (:obj:`str`): Background class. Usually it points to ``Other_Activity``. The statistics of |
206
|
|
|
background_class will be omitted from the plot. |
207
|
|
|
as_percent (:obj:`bool`): Whether or not to convert the accumulated value to percentage. |
208
|
|
|
""" |
209
|
|
|
_compare_per_class_metrics(methods, classes, class_colors, recall_arrays, |
210
|
|
|
group_by=group_by, filename=filename, background_class=background_class, |
211
|
|
|
as_percent=as_percent, metric_name='recall') |
212
|
|
|
|
213
|
|
|
|
214
|
|
|
def compare_per_class_precision(methods, classes, class_colors, precision_arrays, |
215
|
|
|
group_by='methods', filename=None, background_class=None, |
216
|
|
|
as_percent=True): |
217
|
|
|
"""Draw event.rst-based comparison between methods on precision metric. |
218
|
|
|
|
219
|
|
|
Args: |
220
|
|
|
methods (:obj:`list` of :obj:`str`): List of names of different methods to be plotted. |
221
|
|
|
classes (:obj:`list` of :obj:`str`): List of target classes. |
222
|
|
|
class_colors (:obj:`list` of :obj:`str`): List of RGB color for corresponding classes in the ``classes`` list. |
223
|
|
|
recall_arrays (:obj:`list` of :obj:`numpy.ndarray`): List of recall arrays calculated for each methods. |
224
|
|
|
group_by (:obj:`str`): Group the bar graph of various 'methods' first or 'classes' first. Default to 'methods'. |
225
|
|
|
filename (:obj:`str`): The filename to save the plot. None if display on screen with pyplot. |
226
|
|
|
background_class (:obj:`str`): Background class. Usually it points to ``Other_Activity``. The statistics of |
227
|
|
|
background_class will be omitted from the plot. |
228
|
|
|
as_percent (:obj:`bool`): Whether or not to convert the accumulated value to percentage. |
229
|
|
|
""" |
230
|
|
|
_compare_per_class_metrics(methods, classes, class_colors, precision_arrays, |
231
|
|
|
group_by=group_by, filename=filename, background_class=background_class, |
232
|
|
|
as_percent=as_percent, metric_name='precision') |
233
|
|
|
|
234
|
|
|
|
235
|
|
|
def draw_timeliness_hist(classes, class_colors, truth, prediction, truth_scoring, prediction_scoring, time_list, |
236
|
|
|
background_class): |
237
|
|
|
"""Get Timeliness Histogram for underfill and overfill |
238
|
|
|
""" |
239
|
|
|
start_mismatch, stop_mismatch = _get_timeliness_measures(classes, truth, prediction, |
240
|
|
|
truth_scoring, prediction_scoring, time_list) |
241
|
|
|
bg_id = _get_bg_class_id(classes, background_class) |
242
|
|
|
num_classes = len(classes) |
243
|
|
|
# Plot histogram |
244
|
|
|
stack_to_plot = [] |
245
|
|
|
stack_of_colors = [] |
246
|
|
|
stack_of_labels = [] |
247
|
|
|
for i in range(num_classes): |
248
|
|
|
if i != bg_id: |
249
|
|
|
stack_to_plot.append(start_mismatch[i]) |
250
|
|
|
stack_of_colors.append(class_colors[i]) |
251
|
|
|
stack_of_labels.append(classes[i]) |
252
|
|
|
# Histo stack |
253
|
|
|
bins = np.linspace(-300, 300, 100) |
254
|
|
|
plt.figure() |
255
|
|
|
patches = [] |
256
|
|
|
for i in range(num_classes-1): |
257
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color=stack_of_colors[i])) |
258
|
|
|
for i in range(num_classes-1): |
259
|
|
|
plt.subplot(num_classes-1, 1, i+1) |
260
|
|
|
plt.hist(stack_to_plot[i], bins=bins, alpha=0.7, color=stack_of_colors[i], label=stack_of_labels[i], lw=0) |
261
|
|
|
# plt.hist(stack_to_plot, bins=bins, alpha=0.7, color=stack_of_colors, label=stack_of_labels) |
262
|
|
|
plt.legend(patches, stack_of_labels, loc='center left', borderaxespad=0, bbox_to_anchor=(1.05, 0.5), |
263
|
|
|
prop={'size': 8}) |
264
|
|
|
plt.show() |
265
|
|
|
|
266
|
|
|
|
267
|
|
|
def _get_timeliness_measures(classes, truth, prediction, truth_scoring, prediction_scoring, time_list): |
268
|
|
|
num_classes = len(classes) |
269
|
|
|
start_mismatch = [list([]) for i in range(num_classes)] |
270
|
|
|
stop_mismatch = [list([]) for i in range(num_classes)] |
271
|
|
|
# For each Underfill, Overfill |
272
|
|
|
prev_truth = -1 |
273
|
|
|
for i in range(truth.shape[0]): |
274
|
|
|
cur_truth = int(truth[i]) |
275
|
|
|
# Overfill/Underfill only occur at the boundary of any activity event, so look for the boundary first |
276
|
|
|
if cur_truth != prev_truth: |
277
|
|
|
truth_time = time_list[i] |
278
|
|
|
# Check the start boundary |
279
|
|
View Code Duplication |
if truth[i] == prediction[i]: |
|
|
|
|
280
|
|
|
# If current prediction is correct, then it can only be overfill of current truth label. |
281
|
|
|
j = i - 1 |
282
|
|
|
while j >= 0 and prediction_scoring[j] == 'O': |
283
|
|
|
j -= 1 |
284
|
|
|
# If there is no overfill for cur_truth, and the current truth and prediction are the same, |
285
|
|
|
# then there is no start_boundary mismatch. |
286
|
|
|
start_mismatch[cur_truth].append((time_list[j + 1] - truth_time).total_seconds()) |
287
|
|
|
else: |
288
|
|
|
# If current prediction is incorrect, then it can only be underfill of current truth label at start |
289
|
|
|
# boundary. |
290
|
|
|
j = i |
291
|
|
|
while j < truth.shape[0] and truth_scoring[j] == 'U': |
292
|
|
|
j += 1 |
293
|
|
|
if j != i and j < truth.shape[0]: |
294
|
|
|
start_mismatch[cur_truth].append((time_list[j-1] - truth_time).total_seconds()) |
295
|
|
|
# Check the stop boundary |
296
|
|
View Code Duplication |
if i > 0: |
|
|
|
|
297
|
|
|
if prediction[i-1] == truth[i-1]: |
298
|
|
|
# Previous prediction is correct, then it can only be overfill of previous truth. |
299
|
|
|
# If there is no overfill, the stop boundary is accurate |
300
|
|
|
j = i |
301
|
|
|
while prediction_scoring[j] == 'o': |
302
|
|
|
j += 1 |
303
|
|
|
stop_mismatch[prev_truth].append((time_list[j-1] - truth_time).total_seconds()) |
304
|
|
|
else: |
305
|
|
|
# Check Underfill for prev_truth (at the stop boundary) |
306
|
|
|
j = i - 1 |
307
|
|
|
while j >= 0 and truth_scoring[j] == 'u': |
308
|
|
|
j -= 1 |
309
|
|
|
if j != i - 1: |
310
|
|
|
stop_mismatch[prev_truth].append((time_list[j + 1] - truth_time).total_seconds()) |
311
|
|
|
if prev_truth != -1: |
312
|
|
|
if len(stop_mismatch[prev_truth]) > 0 and abs(stop_mismatch[prev_truth][-1]) > 1800: |
313
|
|
|
logger.warning('Stop mismatch is over half an hour: %s at %d (%s) - %f' % |
314
|
|
|
(classes[prev_truth], i, time_list[i], |
315
|
|
|
stop_mismatch[prev_truth][-1])) |
316
|
|
|
if len(start_mismatch[cur_truth]) > 0 and abs(start_mismatch[cur_truth][-1]) > 1800: |
317
|
|
|
logger.warning('Start mismatch is over half an hour: %s at %d (%s) - %f' % |
318
|
|
|
(classes[cur_truth], i, time_list[i], |
319
|
|
|
start_mismatch[cur_truth][-1])) |
320
|
|
|
# Update prev truth |
321
|
|
|
prev_truth = cur_truth |
322
|
|
|
# Sort all arrays |
323
|
|
|
for i in range(num_classes): |
324
|
|
|
start_mismatch[i].sort() |
325
|
|
|
stop_mismatch[i].sort() |
326
|
|
|
# Return |
327
|
|
|
return start_mismatch, stop_mismatch |
328
|
|
|
|