|
1
|
|
|
import logging |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import matplotlib.pyplot as plt |
|
4
|
|
|
from matplotlib.ticker import MultipleLocator |
|
5
|
|
|
from matplotlib.patches import Rectangle |
|
6
|
|
|
|
|
7
|
|
|
logger = logging.getLogger(__name__) |
|
8
|
|
|
|
|
9
|
|
|
recall_scoring_labels = ['Correct', 'Fragmenting', 'Underfill-B', 'Underfill-E', 'Deletion'] |
|
10
|
|
|
fpr_scoring_labels = ['Correct', 'Merging', 'Overfill-B', 'Overfill-E', 'Insertion'] |
|
11
|
|
|
recall_scoring_indices = {'C': 0, 'D': 4, 'F': 1, 'U': 2, 'u': 3} |
|
12
|
|
|
fpr_scoring_indices = {'C': 0, 'I': 4, 'M': 1, 'O': 2, 'o': 3} |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def draw_per_class_recall(classes, class_colors, recall_array, filename=None): |
|
16
|
|
|
"""Draw recall array |
|
17
|
|
|
""" |
|
18
|
|
|
recall_np = np.empty((len(classes), len(recall_scoring_labels)), |
|
19
|
|
|
dtype=np.float) |
|
20
|
|
|
for i, row in enumerate(recall_array): |
|
21
|
|
|
for key in recall_scoring_indices: |
|
22
|
|
|
recall_np[i, recall_scoring_indices[key]] = row[key] |
|
23
|
|
|
recall_np /= np.sum(recall_np, axis=1, keepdims=True) |
|
24
|
|
|
|
|
25
|
|
|
ind = np.arange(len(classes)) |
|
26
|
|
|
width = 0.35 |
|
27
|
|
|
bottom = np.zeros((len(classes),)) |
|
28
|
|
|
bar_array = [] |
|
29
|
|
|
for i in range(len(recall_scoring_labels)): |
|
30
|
|
|
bar_array.append(plt.bar(ind, recall_np[:, i], width, |
|
31
|
|
|
alpha=(1-1/len(recall_scoring_labels) * i), |
|
32
|
|
|
color=class_colors, bottom=bottom)[0]) |
|
33
|
|
|
bottom += recall_np[:, i] |
|
34
|
|
|
plt.ylabel('Percentage') |
|
35
|
|
|
plt.xlabel('Classes') |
|
36
|
|
|
plt.xticks(ind, classes, rotation='vertical') |
|
37
|
|
|
plt.legend(bar_array, recall_scoring_labels) |
|
38
|
|
|
plt.show() |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
def _get_bg_class_id(classes, background_class): |
|
42
|
|
|
# Verify Background Class first |
|
43
|
|
|
if background_class is not None: |
|
44
|
|
|
bg_class_id = classes.index(background_class) |
|
45
|
|
|
else: |
|
46
|
|
|
bg_class_id = -1 |
|
47
|
|
|
return bg_class_id |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
def _get_metric_label_dict(metric_name='recall'): |
|
51
|
|
|
if metric_name == 'recall': |
|
52
|
|
|
metric_labels = recall_scoring_labels |
|
53
|
|
|
metric_indices = recall_scoring_indices |
|
54
|
|
|
else: |
|
55
|
|
|
metric_labels = fpr_scoring_labels |
|
56
|
|
|
metric_indices = fpr_scoring_indices |
|
57
|
|
|
return metric_labels, metric_indices |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
def _gether_per_class_metrics(methods, classes, metric_arrays, as_percent, metric_labels, metric_indices): |
|
61
|
|
|
"""Prepare metrics for bar plot |
|
62
|
|
|
""" |
|
63
|
|
|
# Gather data for bar plot |
|
64
|
|
|
plot_metric_arrays = [] |
|
65
|
|
|
for j in range(len(methods)): |
|
66
|
|
|
cur_metric = np.empty((len(classes), len(metric_labels)), |
|
67
|
|
|
dtype=np.float) |
|
68
|
|
|
for i, row in enumerate(metric_arrays[j]): |
|
69
|
|
|
for key in metric_indices: |
|
70
|
|
|
cur_metric[i, metric_indices[key]] = row[key] |
|
71
|
|
|
# As percent |
|
72
|
|
|
if as_percent: |
|
73
|
|
|
cur_metric /= np.sum(cur_metric, axis=1, keepdims=True) |
|
74
|
|
|
# Append the metric for current methods |
|
75
|
|
|
plot_metric_arrays.append(cur_metric) |
|
76
|
|
|
return plot_metric_arrays |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
def _compare_per_class_metrics(methods, classes, class_colors, metric_arrays, |
|
80
|
|
|
group_by='methods', filename=None, background_class=None, |
|
81
|
|
|
as_percent=True, metric_name='recall'): |
|
82
|
|
|
"""Compare per-class metrics between methods using bar-graph |
|
83
|
|
|
""" |
|
84
|
|
|
metric_labels, metric_indices = _get_metric_label_dict(metric_name=metric_name) |
|
85
|
|
|
bg_class_id = _get_bg_class_id(classes, background_class) |
|
86
|
|
|
plot_metric_arrays = _gether_per_class_metrics(methods, classes, metric_arrays, as_percent, |
|
87
|
|
|
metric_labels, metric_indices) |
|
88
|
|
|
# Prepare Data and x-label |
|
89
|
|
|
xtick_labels = [] |
|
90
|
|
|
bar_colors = [] |
|
91
|
|
|
if bg_class_id < 0: |
|
92
|
|
|
plot_data = np.empty((len(methods) * len(classes), len(metric_labels))) |
|
93
|
|
|
else: |
|
94
|
|
|
plot_data = np.empty((len(methods) * (len(classes) - 1), len(metric_labels))) |
|
95
|
|
|
# Fill plot data with values |
|
96
|
|
|
if group_by == 'methods': |
|
97
|
|
|
num_base_axis = len(methods) |
|
98
|
|
|
if bg_class_id < 0: |
|
99
|
|
|
num_sec_axis = len(classes) |
|
100
|
|
|
else: |
|
101
|
|
|
num_sec_axis = len(classes) - 1 |
|
102
|
|
|
for j in range(len(classes)): |
|
103
|
|
|
if bg_class_id < 0 or j < bg_class_id: |
|
104
|
|
|
for i in range(len(methods)): |
|
105
|
|
|
bar_colors.append(class_colors[j]) |
|
106
|
|
|
xtick_labels.append(methods[i]) |
|
107
|
|
|
plot_data[j * num_base_axis + i, :] = plot_metric_arrays[i][j, :] |
|
108
|
|
|
elif j > bg_class_id: |
|
109
|
|
|
for i in range(len(methods)): |
|
110
|
|
|
bar_colors.append(class_colors[j]) |
|
111
|
|
|
xtick_labels.append(methods[i]) |
|
112
|
|
|
plot_data[(j-1) * num_base_axis + i, :] = plot_metric_arrays[i][j, :] |
|
113
|
|
|
else: |
|
114
|
|
|
if bg_class_id < 0: |
|
115
|
|
|
num_base_axis = len(classes) |
|
116
|
|
|
else: |
|
117
|
|
|
num_base_axis = len(classes) - 1 |
|
118
|
|
|
num_sec_axis = len(methods) |
|
119
|
|
|
for j in range(len(methods)): |
|
120
|
|
|
xtick_labels.append(methods[j]) |
|
121
|
|
|
for i in range(len(classes)): |
|
122
|
|
|
if bg_class_id < 0 or i < bg_class_id: |
|
123
|
|
|
bar_colors.append(class_colors[i]) |
|
124
|
|
|
plot_data[j * num_base_axis + i, :] = plot_metric_arrays[j][i, :] |
|
125
|
|
|
elif i > bg_class_id: |
|
126
|
|
|
bar_colors.append(class_colors[i]) |
|
127
|
|
|
plot_data[j * num_base_axis + i - 1, :] = plot_metric_arrays[j][i, :] |
|
128
|
|
|
# Calculate width and bar location |
|
129
|
|
|
width = 1/(num_base_axis + 1) |
|
130
|
|
|
ind = [] |
|
131
|
|
|
for i in range(num_sec_axis): |
|
132
|
|
|
for j in range(num_base_axis): |
|
133
|
|
|
ind.append(i + j * width + width) |
|
134
|
|
|
bottom = np.zeros((num_base_axis * num_sec_axis,)) |
|
135
|
|
|
# Set major and minor lines for y_axis |
|
136
|
|
|
if as_percent: |
|
137
|
|
|
minor_locator_value = 0.05 |
|
138
|
|
|
major_locator_value = 0.2 |
|
139
|
|
|
else: |
|
140
|
|
|
max_value = np.max(plot_data.sum(axis=1)) + 20 |
|
141
|
|
|
minor_locator_value = int(max_value/20) |
|
142
|
|
|
major_locator_value = int(max_value/5) |
|
143
|
|
|
# Set up x_label location |
|
144
|
|
|
xlabel_ind = [] |
|
145
|
|
|
if group_by == 'methods': |
|
146
|
|
|
xlabel_ind = [x + width/2 for x in ind] |
|
147
|
|
|
xlabel_rotation = 'vertical' |
|
148
|
|
|
else: |
|
149
|
|
|
xlabel_ind = [x + 0.5 for x in range(len(methods))] |
|
150
|
|
|
xlabel_rotation = 'horizontal' |
|
151
|
|
|
# Setup Figure |
|
152
|
|
|
fig, ax = plt.subplots() |
|
153
|
|
|
# Y-Axis |
|
154
|
|
|
minor_locator = MultipleLocator(minor_locator_value) |
|
155
|
|
|
major_locator = MultipleLocator(major_locator_value) |
|
156
|
|
|
ax.yaxis.set_minor_locator(minor_locator) |
|
157
|
|
|
ax.yaxis.set_major_locator(major_locator) |
|
158
|
|
|
ax.yaxis.grid(which="major", color='0.65', linestyle='-', linewidth=1) |
|
159
|
|
|
ax.yaxis.grid(which="minor", color='0.45', linestyle=' ', linewidth=1) |
|
160
|
|
|
# Plot Bar |
|
161
|
|
|
for i in range(len(metric_labels)): |
|
162
|
|
|
ax.bar(ind, plot_data[:, i], width, |
|
163
|
|
|
alpha=(1-1/len(metric_labels) * i), |
|
164
|
|
|
color=bar_colors, bottom=bottom) |
|
165
|
|
|
bottom += plot_data[:, i] |
|
166
|
|
|
if as_percent: |
|
167
|
|
|
plt.ylabel('Percentage') |
|
168
|
|
|
else: |
|
169
|
|
|
plt.ylabel('Count') |
|
170
|
|
|
plt.xlabel('Classes') |
|
171
|
|
|
plt.xticks(xlabel_ind, xtick_labels, rotation=xlabel_rotation, fontsize=6) |
|
172
|
|
|
# Prepare Legends |
|
173
|
|
|
patches = [] |
|
174
|
|
|
legend_labels = [] |
|
175
|
|
|
for i in range(len(metric_labels)): |
|
176
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color='0.3', alpha=(1-1/len(metric_labels) * i))) |
|
177
|
|
|
legend_labels.append(metric_labels[i]) |
|
178
|
|
|
for i in range(len(classes)): |
|
179
|
|
|
if i == bg_class_id: |
|
180
|
|
|
continue |
|
181
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color=class_colors[i])) |
|
182
|
|
|
legend_labels.append(classes[i]) |
|
183
|
|
|
plt.legend(patches, legend_labels, loc='center left', borderaxespad=0, bbox_to_anchor=(1.05, 0.5), |
|
184
|
|
|
prop={'size': 8}) |
|
185
|
|
|
plt.tight_layout() |
|
186
|
|
|
plt.title('Event-based Activity Analysis - %s' % metric_name) |
|
187
|
|
|
if filename is None: |
|
188
|
|
|
plt.show() |
|
189
|
|
|
else: |
|
190
|
|
|
plt.savefig(filename, bbox_inches='tight') |
|
191
|
|
|
|
|
192
|
|
|
|
|
193
|
|
|
def compare_per_class_recall(methods, classes, class_colors, recall_arrays, |
|
194
|
|
|
group_by='methods', filename=None, background_class=None, |
|
195
|
|
|
as_percent=True): |
|
196
|
|
|
"""Draw event.rst-based comparison between methods on Recall metric. |
|
197
|
|
|
|
|
198
|
|
|
Args: |
|
199
|
|
|
methods (:obj:`list` of :obj:`str`): List of names of different methods to be plotted. |
|
200
|
|
|
classes (:obj:`list` of :obj:`str`): List of target classes. |
|
201
|
|
|
class_colors (:obj:`list` of :obj:`str`): List of RGB color for corresponding classes in the ``classes`` list. |
|
202
|
|
|
recall_arrays (:obj:`list` of :obj:`numpy.ndarray`): List of recall arrays calculated for each methods. |
|
203
|
|
|
group_by (:obj:`str`): Group the bar graph of various 'methods' first or 'classes' first. Default to 'methods'. |
|
204
|
|
|
filename (:obj:`str`): The filename to save the plot. None if display on screen with pyplot. |
|
205
|
|
|
background_class (:obj:`str`): Background class. Usually it points to ``Other_Activity``. The statistics of |
|
206
|
|
|
background_class will be omitted from the plot. |
|
207
|
|
|
as_percent (:obj:`bool`): Whether or not to convert the accumulated value to percentage. |
|
208
|
|
|
""" |
|
209
|
|
|
_compare_per_class_metrics(methods, classes, class_colors, recall_arrays, |
|
210
|
|
|
group_by=group_by, filename=filename, background_class=background_class, |
|
211
|
|
|
as_percent=as_percent, metric_name='recall') |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
|
def compare_per_class_precision(methods, classes, class_colors, precision_arrays, |
|
215
|
|
|
group_by='methods', filename=None, background_class=None, |
|
216
|
|
|
as_percent=True): |
|
217
|
|
|
"""Draw event.rst-based comparison between methods on precision metric. |
|
218
|
|
|
|
|
219
|
|
|
Args: |
|
220
|
|
|
methods (:obj:`list` of :obj:`str`): List of names of different methods to be plotted. |
|
221
|
|
|
classes (:obj:`list` of :obj:`str`): List of target classes. |
|
222
|
|
|
class_colors (:obj:`list` of :obj:`str`): List of RGB color for corresponding classes in the ``classes`` list. |
|
223
|
|
|
recall_arrays (:obj:`list` of :obj:`numpy.ndarray`): List of recall arrays calculated for each methods. |
|
224
|
|
|
group_by (:obj:`str`): Group the bar graph of various 'methods' first or 'classes' first. Default to 'methods'. |
|
225
|
|
|
filename (:obj:`str`): The filename to save the plot. None if display on screen with pyplot. |
|
226
|
|
|
background_class (:obj:`str`): Background class. Usually it points to ``Other_Activity``. The statistics of |
|
227
|
|
|
background_class will be omitted from the plot. |
|
228
|
|
|
as_percent (:obj:`bool`): Whether or not to convert the accumulated value to percentage. |
|
229
|
|
|
""" |
|
230
|
|
|
_compare_per_class_metrics(methods, classes, class_colors, precision_arrays, |
|
231
|
|
|
group_by=group_by, filename=filename, background_class=background_class, |
|
232
|
|
|
as_percent=as_percent, metric_name='precision') |
|
233
|
|
|
|
|
234
|
|
|
|
|
235
|
|
|
def draw_timeliness_hist(classes, class_colors, truth, prediction, truth_scoring, prediction_scoring, time_list, |
|
236
|
|
|
background_class): |
|
237
|
|
|
"""Get Timeliness Histogram for underfill and overfill |
|
238
|
|
|
""" |
|
239
|
|
|
start_mismatch, stop_mismatch = _get_timeliness_measures(classes, truth, prediction, |
|
240
|
|
|
truth_scoring, prediction_scoring, time_list) |
|
241
|
|
|
bg_id = _get_bg_class_id(classes, background_class) |
|
242
|
|
|
num_classes = len(classes) |
|
243
|
|
|
# Plot histogram |
|
244
|
|
|
stack_to_plot = [] |
|
245
|
|
|
stack_of_colors = [] |
|
246
|
|
|
stack_of_labels = [] |
|
247
|
|
|
for i in range(num_classes): |
|
248
|
|
|
if i != bg_id: |
|
249
|
|
|
stack_to_plot.append(start_mismatch[i]) |
|
250
|
|
|
stack_of_colors.append(class_colors[i]) |
|
251
|
|
|
stack_of_labels.append(classes[i]) |
|
252
|
|
|
# Histo stack |
|
253
|
|
|
bins = np.linspace(-300, 300, 100) |
|
254
|
|
|
plt.figure() |
|
255
|
|
|
patches = [] |
|
256
|
|
|
for i in range(num_classes-1): |
|
257
|
|
|
patches.append(Rectangle((0, 0), 0, 0, color=stack_of_colors[i])) |
|
258
|
|
|
for i in range(num_classes-1): |
|
259
|
|
|
plt.subplot(num_classes-1, 1, i+1) |
|
260
|
|
|
plt.hist(stack_to_plot[i], bins=bins, alpha=0.7, color=stack_of_colors[i], label=stack_of_labels[i], lw=0) |
|
261
|
|
|
# plt.hist(stack_to_plot, bins=bins, alpha=0.7, color=stack_of_colors, label=stack_of_labels) |
|
262
|
|
|
plt.legend(patches, stack_of_labels, loc='center left', borderaxespad=0, bbox_to_anchor=(1.05, 0.5), |
|
263
|
|
|
prop={'size': 8}) |
|
264
|
|
|
plt.show() |
|
265
|
|
|
|
|
266
|
|
|
|
|
267
|
|
|
def _get_timeliness_measures(classes, truth, prediction, truth_scoring, prediction_scoring, time_list): |
|
268
|
|
|
num_classes = len(classes) |
|
269
|
|
|
start_mismatch = [list([]) for i in range(num_classes)] |
|
270
|
|
|
stop_mismatch = [list([]) for i in range(num_classes)] |
|
271
|
|
|
# For each Underfill, Overfill |
|
272
|
|
|
prev_truth = -1 |
|
273
|
|
|
for i in range(truth.shape[0]): |
|
274
|
|
|
cur_truth = int(truth[i]) |
|
275
|
|
|
# Overfill/Underfill only occur at the boundary of any activity event, so look for the boundary first |
|
276
|
|
|
if cur_truth != prev_truth: |
|
277
|
|
|
truth_time = time_list[i] |
|
278
|
|
|
# Check the start boundary |
|
279
|
|
View Code Duplication |
if truth[i] == prediction[i]: |
|
|
|
|
|
|
280
|
|
|
# If current prediction is correct, then it can only be overfill of current truth label. |
|
281
|
|
|
j = i - 1 |
|
282
|
|
|
while j >= 0 and prediction_scoring[j] == 'O': |
|
283
|
|
|
j -= 1 |
|
284
|
|
|
# If there is no overfill for cur_truth, and the current truth and prediction are the same, |
|
285
|
|
|
# then there is no start_boundary mismatch. |
|
286
|
|
|
start_mismatch[cur_truth].append((time_list[j + 1] - truth_time).total_seconds()) |
|
287
|
|
|
else: |
|
288
|
|
|
# If current prediction is incorrect, then it can only be underfill of current truth label at start |
|
289
|
|
|
# boundary. |
|
290
|
|
|
j = i |
|
291
|
|
|
while j < truth.shape[0] and truth_scoring[j] == 'U': |
|
292
|
|
|
j += 1 |
|
293
|
|
|
if j != i and j < truth.shape[0]: |
|
294
|
|
|
start_mismatch[cur_truth].append((time_list[j-1] - truth_time).total_seconds()) |
|
295
|
|
|
# Check the stop boundary |
|
296
|
|
View Code Duplication |
if i > 0: |
|
|
|
|
|
|
297
|
|
|
if prediction[i-1] == truth[i-1]: |
|
298
|
|
|
# Previous prediction is correct, then it can only be overfill of previous truth. |
|
299
|
|
|
# If there is no overfill, the stop boundary is accurate |
|
300
|
|
|
j = i |
|
301
|
|
|
while prediction_scoring[j] == 'o': |
|
302
|
|
|
j += 1 |
|
303
|
|
|
stop_mismatch[prev_truth].append((time_list[j-1] - truth_time).total_seconds()) |
|
304
|
|
|
else: |
|
305
|
|
|
# Check Underfill for prev_truth (at the stop boundary) |
|
306
|
|
|
j = i - 1 |
|
307
|
|
|
while j >= 0 and truth_scoring[j] == 'u': |
|
308
|
|
|
j -= 1 |
|
309
|
|
|
if j != i - 1: |
|
310
|
|
|
stop_mismatch[prev_truth].append((time_list[j + 1] - truth_time).total_seconds()) |
|
311
|
|
|
if prev_truth != -1: |
|
312
|
|
|
if len(stop_mismatch[prev_truth]) > 0 and abs(stop_mismatch[prev_truth][-1]) > 1800: |
|
313
|
|
|
logger.warning('Stop mismatch is over half an hour: %s at %d (%s) - %f' % |
|
314
|
|
|
(classes[prev_truth], i, time_list[i], |
|
315
|
|
|
stop_mismatch[prev_truth][-1])) |
|
316
|
|
|
if len(start_mismatch[cur_truth]) > 0 and abs(start_mismatch[cur_truth][-1]) > 1800: |
|
317
|
|
|
logger.warning('Start mismatch is over half an hour: %s at %d (%s) - %f' % |
|
318
|
|
|
(classes[cur_truth], i, time_list[i], |
|
319
|
|
|
start_mismatch[cur_truth][-1])) |
|
320
|
|
|
# Update prev truth |
|
321
|
|
|
prev_truth = cur_truth |
|
322
|
|
|
# Sort all arrays |
|
323
|
|
|
for i in range(num_classes): |
|
324
|
|
|
start_mismatch[i].sort() |
|
325
|
|
|
stop_mismatch[i].sort() |
|
326
|
|
|
# Return |
|
327
|
|
|
return start_mismatch, stop_mismatch |
|
328
|
|
|
|