|
@@ 149-155 (lines=7) @@
|
| 146 |
|
for i in range(window, x.shape[0]): |
| 147 |
|
result[i] = model.predict(x[i-window+1:i+1])[-1] |
| 148 |
|
else: |
| 149 |
|
if window == -1: |
| 150 |
|
result = self.decode(x, init_prob) |
| 151 |
|
else: |
| 152 |
|
result = np.zeros(x.shape[0], dtype=np.int) |
| 153 |
|
result[0:window] = self.decode(x[0:window], init_prob) |
| 154 |
|
for i in range(window, x.shape[0]): |
| 155 |
|
result[i] = self.decode(x[i-window+1:i+1], init_prob)[-1] |
| 156 |
|
return result |
| 157 |
|
|
| 158 |
|
def predict_prob(self, x, init_prob=None, window=-1): |
|
@@ 141-147 (lines=7) @@
|
| 138 |
|
model.startprob_ = init_prob |
| 139 |
|
model.emissionprob_ = self.B |
| 140 |
|
model.transmat_ = self.A |
| 141 |
|
if window == -1: |
| 142 |
|
result = model.predict(x) |
| 143 |
|
else: |
| 144 |
|
result = np.zeros(x.shape[0], dtype=np.int) |
| 145 |
|
result[0:window] = model.predict(x[0:window]) |
| 146 |
|
for i in range(window, x.shape[0]): |
| 147 |
|
result[i] = model.predict(x[i-window+1:i+1])[-1] |
| 148 |
|
else: |
| 149 |
|
if window == -1: |
| 150 |
|
result = self.decode(x, init_prob) |