|
@@ 625-639 (lines=15) @@
|
| 622 |
|
feed_dict={self.x: batch_x, self.y_: batch_y, self.length: batch_size, |
| 623 |
|
self.init_state: np.zeros(2 * self.num_units)}) |
| 624 |
|
# Summary |
| 625 |
|
if summaries_dir is not None and (i % summary_interval == 0): |
| 626 |
|
summary, loss, accuracy = session.run( |
| 627 |
|
[self.merged, self.loss, self.accuracy], |
| 628 |
|
feed_dict={self.x: x, self.y_: y, self.length: num_samples - valid_set_len - num_skip, |
| 629 |
|
self.init_state: np.zeros(2 * self.num_units)} |
| 630 |
|
) |
| 631 |
|
train_writer.add_summary(summary, i) |
| 632 |
|
logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) |
| 633 |
|
if (test_x is not None) and (test_y is not None): |
| 634 |
|
merged, accuracy = session.run( |
| 635 |
|
[self.merged, self.accuracy], |
| 636 |
|
feed_dict={self.x: test_x, self.y_: test_y, self.length: test_x.shape[0] - num_skip, |
| 637 |
|
self.init_state: np.zeros(2*self.num_units)}) |
| 638 |
|
test_writer.add_summary(merged, i) |
| 639 |
|
logger.info('test_set accuracy %g' % accuracy) |
| 640 |
|
# Get Summary |
| 641 |
|
if i == x.shape[0] - num_skip: |
| 642 |
|
i = 0 |
|
@@ 127-141 (lines=15) @@
|
| 124 |
|
i = 0 |
| 125 |
|
while _criterion.continue_learning(): |
| 126 |
|
batch_x, batch_y = injector.next_batch() |
| 127 |
|
if summaries_dir is not None and (i % summary_interval == 0): |
| 128 |
|
summary, loss, accuracy = session.run( |
| 129 |
|
[self.merged, self.loss, self.accuracy], |
| 130 |
|
feed_dict={self.x: train_seq_x, self.y_: train_seq_y, |
| 131 |
|
self.init_state: np.zeros((train_seq_x.shape[0], 2 * self.num_units))} |
| 132 |
|
) |
| 133 |
|
train_writer.add_summary(summary, i) |
| 134 |
|
logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) |
| 135 |
|
if (test_x is not None) and (test_y is not None): |
| 136 |
|
merged, accuracy = session.run( |
| 137 |
|
[self.merged, self.accuracy], |
| 138 |
|
feed_dict={self.x: test_seq_x, self.y_: test_seq_y, |
| 139 |
|
self.init_state: np.zeros((test_seq_x.shape[0], 2*self.num_units))}) |
| 140 |
|
test_writer.add_summary(merged, i) |
| 141 |
|
logger.info('test_set accuracy %g' % accuracy) |
| 142 |
|
loss, accuracy, _ = session.run( |
| 143 |
|
[self.loss, self.accuracy, self.fit_step], |
| 144 |
|
feed_dict={self.x: batch_x, self.y_: batch_y, |