@@ 149-155 (lines=7) @@ | ||
146 | for i in range(window, x.shape[0]): |
|
147 | result[i] = model.predict(x[i-window+1:i+1])[-1] |
|
148 | else: |
|
149 | if window == -1: |
|
150 | result = self.decode(x, init_prob) |
|
151 | else: |
|
152 | result = np.zeros(x.shape[0], dtype=np.int) |
|
153 | result[0:window] = self.decode(x[0:window], init_prob) |
|
154 | for i in range(window, x.shape[0]): |
|
155 | result[i] = self.decode(x[i-window+1:i+1], init_prob)[-1] |
|
156 | return result |
|
157 | ||
158 | def predict_prob(self, x, init_prob=None, window=-1): |
|
@@ 141-147 (lines=7) @@ | ||
138 | model.startprob_ = init_prob |
|
139 | model.emissionprob_ = self.B |
|
140 | model.transmat_ = self.A |
|
141 | if window == -1: |
|
142 | result = model.predict(x) |
|
143 | else: |
|
144 | result = np.zeros(x.shape[0], dtype=np.int) |
|
145 | result[0:window] = model.predict(x[0:window]) |
|
146 | for i in range(window, x.shape[0]): |
|
147 | result[i] = model.predict(x[i-window+1:i+1])[-1] |
|
148 | else: |
|
149 | if window == -1: |
|
150 | result = self.decode(x, init_prob) |