|
1
|
|
|
import abc |
|
2
|
|
|
import logging |
|
3
|
|
|
import numpy as np |
|
4
|
|
|
from ..logging import logging_name |
|
5
|
|
|
|
|
6
|
|
|
logger = logging.getLogger(__name__) |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
# region Abstract FeatureRoutineTemplate Class |
|
10
|
|
|
class FeatureRoutineTemplate(metaclass=abc.ABCMeta): |
|
11
|
|
|
"""Feature Routine Class |
|
12
|
|
|
|
|
13
|
|
|
A routine that calculate statistical features every time the window slides. |
|
14
|
|
|
|
|
15
|
|
|
Attributes: |
|
16
|
|
|
name (:obj:`str`): Feature routine name. |
|
17
|
|
|
description (:obj:`str`): Feature routine description. |
|
18
|
|
|
enabled (:obj:`str`): Feature routine enable flag. |
|
19
|
|
|
""" |
|
20
|
|
|
def __init__(self, name, description, enabled=True): |
|
21
|
|
|
""" |
|
22
|
|
|
Initialization of Template Class |
|
23
|
|
|
:return: |
|
24
|
|
|
""" |
|
25
|
|
|
# Name |
|
26
|
|
|
self.name = name |
|
27
|
|
|
# Description |
|
28
|
|
|
self.description = description |
|
29
|
|
|
# enable |
|
30
|
|
|
self.enabled = enabled |
|
31
|
|
|
|
|
32
|
|
|
@abc.abstractmethod |
|
33
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
|
34
|
|
|
"""Abstract update method |
|
35
|
|
|
|
|
36
|
|
|
For some features, we will update some statistical data every time |
|
37
|
|
|
we move forward a data record, instead of going back through the whole |
|
38
|
|
|
window and try to find the answer. This function will be called every time |
|
39
|
|
|
we advance in data record. |
|
40
|
|
|
|
|
41
|
|
|
Args: |
|
42
|
|
|
data_list (:obj:`list`): List of sensor data. |
|
43
|
|
|
cur_index (:obj:`int`): Index of current data record. |
|
44
|
|
|
window_size (:obj:`int`): Sliding window size. |
|
45
|
|
|
sensor_info (:obj:`dict`): Dictionary containing sensor index information. |
|
46
|
|
|
""" |
|
47
|
|
|
return NotImplementedError() |
|
48
|
|
|
|
|
49
|
|
|
@abc.abstractmethod |
|
50
|
|
|
def clear(self): |
|
51
|
|
|
"""Clear Internal Data Structures if recalculation is needed |
|
52
|
|
|
""" |
|
53
|
|
|
return NotImplementedError() |
|
54
|
|
|
# endregion |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
# region Abstract FeatureTemplate Class |
|
58
|
|
|
class FeatureTemplate(metaclass=abc.ABCMeta): |
|
59
|
|
|
"""Statistical Feature Template |
|
60
|
|
|
|
|
61
|
|
|
Args: |
|
62
|
|
|
name (:obj:`str`): Feature name. |
|
63
|
|
|
description (:obj:`str`): Feature description. |
|
64
|
|
|
per_sensor (:obj:`bool`): If the feature is calculated for each sensor. |
|
65
|
|
|
enabled (:obj:`bool`): If the feature is enabled. |
|
66
|
|
|
routine (:obj:`.FeatureRoutineTemplate`): Routine structure. |
|
67
|
|
|
normalized (:obj:`bool`): If the value of feature needs to be normalized. |
|
68
|
|
|
|
|
69
|
|
|
Attributes: |
|
70
|
|
|
name (:obj:`str`): Feature name. |
|
71
|
|
|
description (:obj:`str`): Feature description. |
|
72
|
|
|
index (:obj:`int`): Feature index. |
|
73
|
|
|
normalized (:obj:`bool`): If the value of feature needs to be normalized. |
|
74
|
|
|
per_sensor (:obj:`bool`): If the feature is calculated for each sensor. |
|
75
|
|
|
enabled (:obj:`bool`): If the feature is enabled. |
|
76
|
|
|
routine (:obj:`.FeatureRoutineTemplate`): Routine structure. |
|
77
|
|
|
_is_value_valid (:obj:`bool`): If the value calculated is valid |
|
78
|
|
|
""" |
|
79
|
|
|
def __init__(self, name, description, enabled=True, normalized=True, per_sensor=False, routine=None): |
|
80
|
|
|
self.name = name |
|
81
|
|
|
self.description = description |
|
82
|
|
|
self.index = -1 |
|
83
|
|
|
self.normalized = normalized |
|
84
|
|
|
self.per_sensor = per_sensor |
|
85
|
|
|
self.enabled = enabled |
|
86
|
|
|
self._is_value_valid = False |
|
87
|
|
|
# update Routine |
|
88
|
|
|
# For some feature, we will update statistical data every time we move forward |
|
89
|
|
|
# a data record. Instead of going back through previous window, the update function |
|
90
|
|
|
# in this routine structure will be called each time we advance to next data record |
|
91
|
|
|
self.routine = routine |
|
92
|
|
|
|
|
93
|
|
|
@abc.abstractmethod |
|
94
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
95
|
|
|
"""Abstract method to get feature value |
|
96
|
|
|
|
|
97
|
|
|
Args: |
|
98
|
|
|
data_list (:obj:`list`): List of sensor data. |
|
99
|
|
|
cur_index (:obj:`int`): Index of current data record. |
|
100
|
|
|
window_size (:obj:`int`): Sliding window size. |
|
101
|
|
|
sensor_info (:obj:`dict`): Dictionary containing sensor index information. |
|
102
|
|
|
sensor_name (:obj:`str`): Sensor Name. |
|
103
|
|
|
|
|
104
|
|
|
Returns: |
|
105
|
|
|
:obj:`double`: feature value |
|
106
|
|
|
""" |
|
107
|
|
|
return NotImplementedError() |
|
108
|
|
|
|
|
109
|
|
|
@property |
|
110
|
|
|
def is_value_valid(self): |
|
111
|
|
|
"""Statistical feature value valid check |
|
112
|
|
|
|
|
113
|
|
|
Due to errors and failures of sensors, the statistical feature calculated |
|
114
|
|
|
may go out of bound. This abstract method is used to check if the value |
|
115
|
|
|
calculated is valid. If not, it will not be inserted into feature vectors. |
|
116
|
|
|
|
|
117
|
|
|
Returns: |
|
118
|
|
|
:obj:`bool`: True if the result is valid. |
|
119
|
|
|
""" |
|
120
|
|
|
return self._is_value_valid |
|
121
|
|
|
# endregion |
|
122
|
|
|
|
|
123
|
|
|
|
|
124
|
|
|
class EventHour(FeatureTemplate): |
|
125
|
|
|
"""Hour of last event.rst. |
|
126
|
|
|
|
|
127
|
|
|
It returns the hour of last sensor event.rst in the sliding window. If ``normalized`` is set to ``True``, |
|
128
|
|
|
the hour is divided by 24, so that the value is bounded between 0 to 1. |
|
129
|
|
|
|
|
130
|
|
|
Args: |
|
131
|
|
|
normalized (:obj:`bool`): If true, the hour is normalized between 0 to 1. |
|
132
|
|
|
""" |
|
133
|
|
|
def __init__(self, normalized=False): |
|
134
|
|
|
super().__init__(name='lastEventHour', |
|
135
|
|
|
description='Time of the last sensor event.rst in window (hour)', |
|
136
|
|
|
normalized=normalized, |
|
137
|
|
|
per_sensor=False, |
|
138
|
|
|
enabled=True, |
|
139
|
|
|
routine=None) |
|
140
|
|
|
|
|
141
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
142
|
|
|
"""Get the hour when the last sensor event.rst in the window occurred |
|
143
|
|
|
|
|
144
|
|
|
Note: |
|
145
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
|
146
|
|
|
parameters. |
|
147
|
|
|
""" |
|
148
|
|
|
self._is_value_valid = True |
|
149
|
|
|
if self.normalized: |
|
150
|
|
|
return np.float(data_list[cur_index]['datetime'].hour)/24 |
|
151
|
|
|
else: |
|
152
|
|
|
return np.float(data_list[cur_index]['datetime'].hour) |
|
153
|
|
|
|
|
154
|
|
|
|
|
155
|
|
|
class EventSeconds(FeatureTemplate): |
|
156
|
|
|
"""Seconds of last event.rst. |
|
157
|
|
|
|
|
158
|
|
|
The time of the hour (in seconds) of the last sensor event.rst in the window. If ``normalized`` is ``True``, |
|
159
|
|
|
the seconds is divided by 3600. |
|
160
|
|
|
|
|
161
|
|
|
Args: |
|
162
|
|
|
normalized (:obj:`bool`): If true, the hour is normalized between 0 to 1. |
|
163
|
|
|
""" |
|
164
|
|
|
def __init__(self, normalized=False): |
|
165
|
|
|
super().__init__( |
|
166
|
|
|
name='lastEventSeconds', |
|
167
|
|
|
description='Time of the last sensor event.rst in window in seconds', |
|
168
|
|
|
normalized=normalized, |
|
169
|
|
|
per_sensor=False, |
|
170
|
|
|
enabled=True, |
|
171
|
|
|
routine=None) |
|
172
|
|
|
|
|
173
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
174
|
|
|
"""Get the time within an hour when the last sensor event.rst in the window occurred (in seconds) |
|
175
|
|
|
|
|
176
|
|
|
Note: |
|
177
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
|
178
|
|
|
parameters. |
|
179
|
|
|
""" |
|
180
|
|
|
self._is_value_valid = True |
|
181
|
|
|
time = data_list[cur_index]['datetime'] |
|
182
|
|
|
if self.normalized: |
|
183
|
|
|
return np.float((time.minute * 60) + time.second)/3600 |
|
184
|
|
|
else: |
|
185
|
|
|
return np.float((time.minute * 60) + time.second) |
|
186
|
|
|
|
|
187
|
|
|
|
|
188
|
|
|
class WindowDuration(FeatureTemplate): |
|
189
|
|
|
"""Length of the window. |
|
190
|
|
|
|
|
191
|
|
|
Any sliding window should have a duration of less than half a day. If it is, it is probable that there |
|
192
|
|
|
some missing sensor events, so the statistical features calculated for such a window is invalid. |
|
193
|
|
|
|
|
194
|
|
|
Args: |
|
195
|
|
|
normalized (:obj:`bool`): If true, the hour is normalized between 0 to 1. |
|
196
|
|
|
""" |
|
197
|
|
|
def __init__(self, normalized=False): |
|
198
|
|
|
super().__init__(name='windowDuration', |
|
199
|
|
|
description='Duration of current window in seconds', |
|
200
|
|
|
normalized=normalized, |
|
201
|
|
|
per_sensor=False, |
|
202
|
|
|
enabled=True, |
|
203
|
|
|
routine=None) |
|
204
|
|
|
|
|
205
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
206
|
|
|
"""Get the duration of the window in seconds. Invalid if the duration is greater than half a day. |
|
207
|
|
|
|
|
208
|
|
|
Note: |
|
209
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
|
210
|
|
|
parameters. |
|
211
|
|
|
""" |
|
212
|
|
|
self._is_value_valid = True |
|
213
|
|
|
timedelta = data_list[cur_index]['datetime'] - data_list[cur_index - window_size + 1]['datetime'] |
|
214
|
|
|
window_duration = timedelta.total_seconds() |
|
215
|
|
|
if window_duration > 3600 * 12: |
|
216
|
|
|
self._is_value_valid = False |
|
217
|
|
|
# Window Duration is greater than a day - not possible |
|
218
|
|
|
# print('Warning: curIndex: %d; windowSize: %d; windowDuration: %f' % |
|
219
|
|
|
# (curIndex, windowSize, window_duration)) |
|
220
|
|
|
window_duration -= 3600 * 12 * (int(window_duration) / (3600 * 12)) |
|
221
|
|
|
# print('Fixed window duration %f' % window_duration) |
|
222
|
|
|
if data_list[cur_index]['datetime'].month != data_list[cur_index - 1]['datetime'].month or \ |
|
223
|
|
|
data_list[cur_index]['datetime'].day != data_list[cur_index - 1]['datetime'].day: |
|
224
|
|
|
date_advanced = (data_list[cur_index]['datetime'] - data_list[cur_index - 1]['datetime']).days |
|
225
|
|
|
hour_advanced = data_list[cur_index]['datetime'].hour - data_list[cur_index - 1]['datetime'].hour |
|
226
|
|
|
logger.warning(logging_name(self) + ': line %d - %d: %s' % |
|
227
|
|
|
(cur_index, cur_index + 1, data_list[cur_index - 1]['datetime'].isoformat())) |
|
228
|
|
|
logger.warning(logging_name(self) + ': Date Advanced: %d; hour gap: %d' % |
|
229
|
|
|
(date_advanced, hour_advanced)) |
|
230
|
|
|
if self.normalized: |
|
231
|
|
|
# Normalized to 12 hours |
|
232
|
|
|
return np.float(window_duration) / (3600 * 12) |
|
233
|
|
|
else: |
|
234
|
|
|
return np.float(window_duration) |
|
235
|
|
|
|
|
236
|
|
|
|
|
237
|
|
|
class LastSensor(FeatureTemplate): |
|
238
|
|
|
"""Sensor ID of the last sensor event.rst of the window. |
|
239
|
|
|
|
|
240
|
|
|
For algorithms like decision trees and hidden markov model, sensor ID can be directly used as features. |
|
241
|
|
|
However, in other algorithms such as multi-layer perceptron, or support vector machine, the sensor ID |
|
242
|
|
|
needs to be binary coded. |
|
243
|
|
|
|
|
244
|
|
|
Args: |
|
245
|
|
|
per_sensor (:obj:`bool`): True if the sensor ID needs to be binary coded. |
|
246
|
|
|
""" |
|
247
|
|
|
def __init__(self, per_sensor=False): |
|
248
|
|
|
super().__init__(name='lastSensorInWindow', |
|
249
|
|
|
description='Sensor ID in the current window', |
|
250
|
|
|
per_sensor=per_sensor, |
|
251
|
|
|
enabled=True, |
|
252
|
|
|
routine=None) |
|
253
|
|
|
|
|
254
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
255
|
|
|
"""Get the sensor which fired the last event.rst in the sliding window. |
|
256
|
|
|
|
|
257
|
|
|
If it is configured as per-sensor feature, it returns 1 if the sensor specified |
|
258
|
|
|
triggers the last event.rst in the window. Otherwise returns 0. |
|
259
|
|
|
If it is configured as a non-per-sensor feature, it returns the index of the |
|
260
|
|
|
index corresponding to the dominant sensor name that triggered the last event.rst. |
|
261
|
|
|
|
|
262
|
|
|
Note: |
|
263
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
|
264
|
|
|
parameters. |
|
265
|
|
|
""" |
|
266
|
|
|
self._is_value_valid = True |
|
267
|
|
|
sensor_label = data_list[cur_index]['sensor_id'] |
|
268
|
|
|
if self.per_sensor: |
|
269
|
|
|
if sensor_name is not None: |
|
270
|
|
|
if sensor_name == sensor_label: |
|
271
|
|
|
return 1 |
|
272
|
|
|
else: |
|
273
|
|
|
return 0 |
|
274
|
|
|
else: |
|
275
|
|
|
if sensor_info.get(sensor_label, None) is None: |
|
276
|
|
|
self._is_value_valid = False |
|
277
|
|
|
logger.warning(logging_name(self) + ': Cannot find sensor %s in sensor_info' % sensor_label) |
|
278
|
|
|
logger.debug(logging_name(self) + ': Available sensors are: ' + str(sensor_info.keys())) |
|
279
|
|
|
return 0 |
|
280
|
|
|
else: |
|
281
|
|
|
return sensor_info[sensor_label]['index'] |
|
282
|
|
|
|
|
283
|
|
|
|
|
284
|
|
|
class SensorCountRoutine(FeatureRoutineTemplate): |
|
285
|
|
|
"""Routine to count occurance of each sensor |
|
286
|
|
|
|
|
287
|
|
|
Attributes: |
|
288
|
|
|
sensor_count (:obj:`dict`): Dictionary that counts the occurrance of each sensor |
|
289
|
|
|
""" |
|
290
|
|
|
def __init__(self): |
|
291
|
|
|
super().__init__( |
|
292
|
|
|
name='SensorCountRoutine', |
|
293
|
|
|
description='Count Occurrence of all sensors in current event.rst window', |
|
294
|
|
|
enabled=True |
|
295
|
|
|
) |
|
296
|
|
|
# Dominant Sensor |
|
297
|
|
|
self.sensor_count = {} |
|
298
|
|
|
|
|
299
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
|
300
|
|
|
"""Record the number of occurrence of each sensor in the sensor count dictionary. |
|
301
|
|
|
""" |
|
302
|
|
|
self.sensor_count = {} |
|
303
|
|
|
for sensor_label in sensor_info.keys(): |
|
304
|
|
|
if sensor_info[sensor_label]['enable']: |
|
305
|
|
|
self.sensor_count[sensor_label] = 0 |
|
306
|
|
|
for index in range(0, window_size): |
|
307
|
|
|
if data_list[cur_index - index]['sensor_id'] in self.sensor_count.keys(): |
|
308
|
|
|
self.sensor_count[data_list[cur_index - index]['sensor_id']] += 1 |
|
309
|
|
|
|
|
310
|
|
|
def clear(self): |
|
311
|
|
|
self.sensor_count = {} |
|
312
|
|
|
|
|
313
|
|
|
sensor_count_routine = SensorCountRoutine() |
|
314
|
|
|
|
|
315
|
|
|
|
|
316
|
|
|
class SensorCount(FeatureTemplate): |
|
317
|
|
|
"""Counts the occurrence of each sensor within the sliding window. |
|
318
|
|
|
|
|
319
|
|
|
The count of occurrence of each sensor is normalized to the length (total number of events) of the window if the |
|
320
|
|
|
``normalized`` is set to True. |
|
321
|
|
|
|
|
322
|
|
|
Args: |
|
323
|
|
|
normalized (:obj:`bool`): If true, the count of each sensor is normalized between 0 to 1. |
|
324
|
|
|
""" |
|
325
|
|
|
def __init__(self, normalized=False): |
|
326
|
|
|
super().__init__(name='sensorCount', |
|
327
|
|
|
description='Number of Events in the window related to the sensor', |
|
328
|
|
|
normalized=normalized, |
|
329
|
|
|
per_sensor=True, |
|
330
|
|
|
enabled=True, |
|
331
|
|
|
routine=sensor_count_routine) |
|
332
|
|
|
|
|
333
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
334
|
|
|
"""Counts the number of occurrence of the sensor specified in current window. |
|
335
|
|
|
""" |
|
336
|
|
|
count = self.routine.sensor_count.get(sensor_name, None) |
|
337
|
|
|
if count is None: |
|
338
|
|
|
logger.error(logging_name(self) + ': Cannot find sensor %s in sensor list' % sensor_name) |
|
339
|
|
|
self._is_value_valid = False |
|
340
|
|
|
else: |
|
341
|
|
|
self._is_value_valid = True |
|
342
|
|
|
if self.normalized: |
|
343
|
|
|
return float(count)/(window_size * 2) |
|
344
|
|
|
else: |
|
345
|
|
|
return float(count) |
|
346
|
|
|
|
|
347
|
|
|
|
|
348
|
|
|
class SensorElapseTimeRoutine(FeatureRoutineTemplate): |
|
349
|
|
|
"""Routine to record last occurrence of each sensor |
|
350
|
|
|
|
|
351
|
|
|
Attributes: |
|
352
|
|
|
sensor_fire_log (:obj:`dict`): Dictionary that record the last firing state of each sensor |
|
353
|
|
|
""" |
|
354
|
|
|
def __init__(self): |
|
355
|
|
|
super().__init__(name='SensorElapseTimeUpdateRoutine', |
|
356
|
|
|
description='Update Sensor Elapse Time for all enabled sensors', |
|
357
|
|
|
enabled=True) |
|
358
|
|
|
# Sensor Fire Log |
|
359
|
|
|
self.sensor_fire_log = {} |
|
360
|
|
|
|
|
361
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
|
362
|
|
|
"""Record the number of occurrence of each sensor in the sensor count dictionary. |
|
363
|
|
|
""" |
|
364
|
|
|
if not self.sensor_fire_log: |
|
365
|
|
|
for sensor_label in sensor_info.keys(): |
|
366
|
|
|
self.sensor_fire_log[sensor_label] = data_list[cur_index - window_size + 1]['datetime'] |
|
367
|
|
|
for i in range(0, window_size): |
|
368
|
|
|
self.sensor_fire_log[data_list[cur_index - i]['sensor_id']] = data_list[cur_index - i]['datetime'] |
|
369
|
|
|
self.sensor_fire_log[data_list[cur_index]['sensor_id']] = data_list[cur_index]['datetime'] |
|
370
|
|
|
|
|
371
|
|
|
def clear(self): |
|
372
|
|
|
self.sensor_fire_log = {} |
|
373
|
|
|
|
|
374
|
|
|
sensor_elapse_time_routine = SensorElapseTimeRoutine() |
|
375
|
|
|
|
|
376
|
|
|
|
|
377
|
|
|
class SensorElapseTime(FeatureTemplate): |
|
378
|
|
|
"""The time elapsed since last firing (in seconds) |
|
379
|
|
|
""" |
|
380
|
|
|
def __init__(self, normalized=False): |
|
381
|
|
|
super().__init__(name='sensorElapseTime', |
|
382
|
|
|
description='Time since each sensor fired (in seconds)', |
|
383
|
|
|
normalized=normalized, |
|
384
|
|
|
per_sensor=True, |
|
385
|
|
|
enabled=True, |
|
386
|
|
|
routine=sensor_elapse_time_routine) |
|
387
|
|
|
|
|
388
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
389
|
|
|
"""Get elapse time of specified sensor in seconds |
|
390
|
|
|
""" |
|
391
|
|
|
self._is_value_valid = True |
|
392
|
|
|
timedelta = data_list[cur_index]['datetime'] - self.routine.sensor_fire_log[sensor_name] |
|
393
|
|
|
sensor_duration = timedelta.total_seconds() |
|
394
|
|
|
if self.normalized: |
|
395
|
|
|
elapse_time = float(sensor_duration)/(12*3600) |
|
396
|
|
|
# If the sensor is not fired in past 12 hours, just round it up to 12 hours |
|
397
|
|
|
if elapse_time > 1: |
|
398
|
|
|
elapse_time = 1. |
|
399
|
|
|
return elapse_time |
|
400
|
|
|
else: |
|
401
|
|
|
return float(sensor_duration) |
|
402
|
|
|
|
|
403
|
|
|
|
|
404
|
|
|
class DominantSensorRoutine(FeatureRoutineTemplate): |
|
405
|
|
|
"""Routine to record the occurance of each sensor within the sliding window |
|
406
|
|
|
|
|
407
|
|
|
Attributes: |
|
408
|
|
|
dominant_sensor_list (:obj:`dict`): Dictionary that record the last firing state of each sensor |
|
409
|
|
|
""" |
|
410
|
|
|
def __init__(self): |
|
411
|
|
|
super().__init__(name='DominantSensorRoutine', |
|
412
|
|
|
description='DominantSensorUpdateRoutine', |
|
413
|
|
|
enabled=True) |
|
414
|
|
|
# Dominant Sensor |
|
415
|
|
|
self.dominant_sensor_list = {} |
|
416
|
|
|
|
|
417
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
|
418
|
|
|
"""Calculate the dominant sensor of current window and store |
|
419
|
|
|
the name of the sensor in the dominant sensor array. The |
|
420
|
|
|
information is fetched by dominant sensor features. |
|
421
|
|
|
""" |
|
422
|
|
|
if cur_index < window_size: |
|
423
|
|
|
logger.warning(logging_name(self) + ': current index %d is smaller than window size %d.' % |
|
424
|
|
|
(cur_index, window_size)) |
|
425
|
|
|
sensor_count = {} |
|
426
|
|
|
for index in range(0, window_size): |
|
427
|
|
|
if data_list[cur_index - index]['sensor_id'] in sensor_count.keys(): |
|
428
|
|
|
sensor_count[data_list[cur_index - index]['sensor_id']] += 1 |
|
429
|
|
|
else: |
|
430
|
|
|
sensor_count[data_list[cur_index - index]['sensor_id']] = 1 |
|
431
|
|
|
# Find the Dominant one |
|
432
|
|
|
max_count = 0 |
|
433
|
|
|
for sensor_label in sensor_count.keys(): |
|
434
|
|
|
if sensor_count[sensor_label] > max_count: |
|
435
|
|
|
max_count = sensor_count[sensor_label] |
|
436
|
|
|
self.dominant_sensor_list[cur_index] = sensor_label |
|
437
|
|
|
|
|
438
|
|
|
def clear(self): |
|
439
|
|
|
self.dominant_sensor_list = {} |
|
440
|
|
|
|
|
441
|
|
|
dominant_sensor_routine = DominantSensorRoutine() |
|
442
|
|
|
|
|
443
|
|
|
|
|
444
|
|
View Code Duplication |
class DominantSensor(FeatureTemplate): |
|
|
|
|
|
|
445
|
|
|
"""Dominant Sensor of current window. |
|
446
|
|
|
|
|
447
|
|
|
The sensor that fires the most amount of sensor event.rst in the current window. |
|
448
|
|
|
|
|
449
|
|
|
Args: |
|
450
|
|
|
per_sensor (:obj:`bool`): True if the sensor ID needs to be binary coded. |
|
451
|
|
|
""" |
|
452
|
|
|
def __init__(self, per_sensor=False): |
|
453
|
|
|
super().__init__(name='DominantSensor', |
|
454
|
|
|
description='Dominant Sensor in the window', |
|
455
|
|
|
normalized=True, |
|
456
|
|
|
per_sensor=per_sensor, |
|
457
|
|
|
enabled=True, |
|
458
|
|
|
routine=dominant_sensor_routine) |
|
459
|
|
|
|
|
460
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
461
|
|
|
"""If per_sensor is True, returns 1 with corresponding sensor Id. |
|
462
|
|
|
otherwise, return the index of last sensor in the window |
|
463
|
|
|
""" |
|
464
|
|
|
self._is_value_valid = True |
|
465
|
|
|
dominant_sensor_label = self.routine.dominant_sensor_list.get(cur_index, None) |
|
466
|
|
|
if dominant_sensor_label is None: |
|
467
|
|
|
logger.warning(logging_name(self) + ': cannot find dominant sensor label for window index %d' % cur_index) |
|
468
|
|
|
if self.per_sensor: |
|
469
|
|
|
if sensor_name is not None: |
|
470
|
|
|
if sensor_name == dominant_sensor_label: |
|
471
|
|
|
return 1 |
|
472
|
|
|
else: |
|
473
|
|
|
return 0 |
|
474
|
|
|
else: |
|
475
|
|
|
return sensor_info[dominant_sensor_label]['index'] |
|
476
|
|
|
|
|
477
|
|
|
|
|
478
|
|
View Code Duplication |
class DominantSensorPreviousWindow(FeatureTemplate): |
|
|
|
|
|
|
479
|
|
|
"""Dominant Sensor of previous window. |
|
480
|
|
|
|
|
481
|
|
|
The sensor that fires the most amount of sensor event.rst in the current window. |
|
482
|
|
|
|
|
483
|
|
|
Args: |
|
484
|
|
|
per_sensor (:obj:`bool`): True if the sensor ID needs to be binary coded. |
|
485
|
|
|
""" |
|
486
|
|
|
def __init__(self, per_sensor=False): |
|
487
|
|
|
super().__init__(name='DominantSensorPreviousWindow', |
|
488
|
|
|
description='Dominant Sensor in the previous window', |
|
489
|
|
|
normalized=True, |
|
490
|
|
|
per_sensor=per_sensor, |
|
491
|
|
|
enabled=True, |
|
492
|
|
|
routine=dominant_sensor_routine) |
|
493
|
|
|
|
|
494
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
|
495
|
|
|
"""If per_sensor is True, returns 1 with corresponding sensor Id. |
|
496
|
|
|
otherwise, return the index of last sensor in the window |
|
497
|
|
|
""" |
|
498
|
|
|
dominant_sensor_label = self.routine.dominant_sensor_list.get([cur_index-1], None) |
|
499
|
|
|
if dominant_sensor_label is None: |
|
500
|
|
|
logger.warning(logging_name(self) + ': cannot find dominant sensor label for window index %d' % cur_index) |
|
501
|
|
|
if self.per_sensor: |
|
502
|
|
|
if sensor_name is not None: |
|
503
|
|
|
if sensor_name == dominant_sensor_label: |
|
504
|
|
|
return 1 |
|
505
|
|
|
else: |
|
506
|
|
|
return 0 |
|
507
|
|
|
else: |
|
508
|
|
|
return sensor_info[dominant_sensor_label]['index'] |
|
509
|
|
|
|