|
1
|
|
|
import math |
|
2
|
|
|
import random |
|
3
|
|
|
import logging |
|
4
|
|
|
import collections |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
|
|
7
|
|
|
logger = logging.getLogger(__name__) |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class BatchInjector: |
|
11
|
|
|
"""Retrieving dataset values in batches |
|
12
|
|
|
|
|
13
|
|
|
Args: |
|
14
|
|
|
data_x (:obj:`numpy.ndarray`): Input feature array. |
|
15
|
|
|
data_y (:obj:`numpy.ndarray`): Input label array. |
|
16
|
|
|
batch_size (:obj:`int`): Batch size. |
|
17
|
|
|
num_batches (:obj:`int`): The number of batches in the input data. |
|
18
|
|
|
|
|
19
|
|
|
Attributes: |
|
20
|
|
|
size (:obj:`int`): Number of input vectors. |
|
21
|
|
|
batch_size (:obj:`int`): Batch size. |
|
22
|
|
|
num_batches (:obj:`int`): Number of batches in the input data. |
|
23
|
|
|
num_epochs (:obj:`int`): Number of epoch of current iteration. |
|
24
|
|
|
cur_batch (:obj:`int`): Current batch index. |
|
25
|
|
|
data_x (:obj:`numpy.ndarray`): Reference to input feature array. |
|
26
|
|
|
data_y (:obj:`numpy.ndarray`): Reference to input label array.s |
|
27
|
|
|
""" |
|
28
|
|
View Code Duplication |
def __init__(self, data_x, data_y=None, batch_size=-1, num_batches=-1): |
|
|
|
|
|
|
29
|
|
|
self.size = data_x.shape[0] |
|
30
|
|
|
if 0 < batch_size <= self.size: |
|
31
|
|
|
self.batch_size = batch_size |
|
32
|
|
|
self.num_batches = math.floor(self.size / self.batch_size) |
|
33
|
|
|
elif num_batches > 0: |
|
34
|
|
|
self.batch_size = math.floor(self.size / num_batches) |
|
35
|
|
|
self.num_batches = num_batches |
|
36
|
|
|
else: |
|
37
|
|
|
raise ValueError('Invalid batch_size or num_batches.') |
|
38
|
|
|
self.num_epochs = 0 |
|
39
|
|
|
self.cur_batch = 0 |
|
40
|
|
|
self.data_x = data_x |
|
41
|
|
|
self.data_y = data_y |
|
42
|
|
|
if data_y is not None: |
|
43
|
|
|
if self.data_x.shape[0] != self.data_y.shape[0]: |
|
44
|
|
|
raise ValueError('data_x, data_y provided have different number of rows.') |
|
45
|
|
|
|
|
46
|
|
|
def next_batch(self): |
|
47
|
|
|
"""Get Next Batch |
|
48
|
|
|
""" |
|
49
|
|
|
if self.cur_batch == self.num_batches - 1: |
|
50
|
|
|
start = self.batch_size * self.cur_batch |
|
51
|
|
|
end = self.size |
|
52
|
|
|
self.cur_batch = 0 |
|
53
|
|
|
self.num_epochs += 1 |
|
54
|
|
|
else: |
|
55
|
|
|
start = self.batch_size * self.cur_batch |
|
56
|
|
|
end = start + self.batch_size |
|
57
|
|
|
self.cur_batch += 1 |
|
58
|
|
|
if self.data_y is None: |
|
59
|
|
|
return self.data_x[start:end, :] |
|
60
|
|
|
else: |
|
61
|
|
|
return self.data_x[start:end, :], self.data_y[start:end, :] |
|
62
|
|
|
|
|
63
|
|
|
def reset(self): |
|
64
|
|
|
"""Reset all counters |
|
65
|
|
|
""" |
|
66
|
|
|
self.cur_batch = 0 |
|
67
|
|
|
self.num_epochs = 0 |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
class BatchSequenceInjector: |
|
71
|
|
|
"""Retrieving dataset values in batches and form a sequence of events |
|
72
|
|
|
|
|
73
|
|
|
Args: |
|
74
|
|
|
data_x (:obj:`numpy.ndarray`): Input feature array. |
|
75
|
|
|
data_y (:obj:`numpy.ndarray`): Input label array. |
|
76
|
|
|
seq_len (:obj:`int`): Length of sequence. |
|
77
|
|
|
batch_size (:obj:`int`): Batch size. |
|
78
|
|
|
num_batches (:obj:`int`): The number of batches in the input data. |
|
79
|
|
|
|
|
80
|
|
|
Attributes: |
|
81
|
|
|
length (:obj:`int`): Length of sequence. |
|
82
|
|
|
size (:obj:`int`): Number of input vectors. |
|
83
|
|
|
batch_size (:obj:`int`): Batch size. |
|
84
|
|
|
num_batches (:obj:`int`): Number of batches in the input data. |
|
85
|
|
|
num_epochs (:obj:`int`): Number of epoch of current iteration. |
|
86
|
|
|
cur_batch (:obj:`int`): Current batch index. |
|
87
|
|
|
data_x (:obj:`numpy.ndarray`): Reference to input feature array. |
|
88
|
|
|
data_y (:obj:`numpy.ndarray`): Reference to input label array.s |
|
89
|
|
|
""" |
|
90
|
|
View Code Duplication |
def __init__(self, data_x, data_y=None, length=100, batch_size=-1, num_batches=-1, with_seq=False): |
|
|
|
|
|
|
91
|
|
|
self.with_seq = with_seq |
|
92
|
|
|
self.length = length |
|
93
|
|
|
self.size = data_x.shape[0] - length |
|
94
|
|
|
if 0 < batch_size <= self.size: |
|
95
|
|
|
self.batch_size = batch_size |
|
96
|
|
|
self.num_batches = math.floor(self.size / self.batch_size) |
|
97
|
|
|
elif num_batches > 0: |
|
98
|
|
|
self.batch_size = math.floor(self.size / num_batches) |
|
99
|
|
|
self.num_batches = num_batches |
|
100
|
|
|
else: |
|
101
|
|
|
raise ValueError('Invalid batch_size or num_batches.') |
|
102
|
|
|
self.num_epochs = 0 |
|
103
|
|
|
self.cur_batch = 0 |
|
104
|
|
|
self.data_x = data_x |
|
105
|
|
|
self.data_y = data_y |
|
106
|
|
|
if data_y is not None: |
|
107
|
|
|
if self.data_x.shape[0] != self.data_y.shape[0]: |
|
108
|
|
|
raise ValueError('data_x, data_y provided have different number of rows.') |
|
109
|
|
|
|
|
110
|
|
|
def next_batch(self, skip=1): |
|
111
|
|
|
"""Get Next Batch |
|
112
|
|
|
""" |
|
113
|
|
|
self.cur_batch += skip-1 |
|
114
|
|
|
if self.cur_batch > self.num_batches - 1: |
|
115
|
|
|
self.cur_batch = 0 |
|
116
|
|
|
self.num_epochs += 1 |
|
117
|
|
|
if self.cur_batch == self.num_batches - 1: |
|
118
|
|
|
start = self.batch_size * self.cur_batch |
|
119
|
|
|
end = self.size |
|
120
|
|
|
self.cur_batch = 0 |
|
121
|
|
|
self.num_epochs += 1 |
|
122
|
|
|
else: |
|
123
|
|
|
start = self.batch_size * self.cur_batch |
|
124
|
|
|
end = start + self.batch_size |
|
125
|
|
|
self.cur_batch += 1 |
|
126
|
|
|
return self.to_sequence(self.length, self.data_x, self.data_y, start, end, with_seq=self.with_seq) |
|
127
|
|
|
|
|
128
|
|
|
def reset(self): |
|
129
|
|
|
"""Reset all counters |
|
130
|
|
|
""" |
|
131
|
|
|
self.cur_batch = 0 |
|
132
|
|
|
self.num_epochs = 0 |
|
133
|
|
|
|
|
134
|
|
|
@staticmethod |
|
135
|
|
|
def to_sequence(length, x, y=None, start=None, end=None, with_seq=False): |
|
136
|
|
|
"""Turn feature array as a sequence array where each new feature contains seq_len number of original features. |
|
137
|
|
|
|
|
138
|
|
|
Args: |
|
139
|
|
|
length (:obj:`int`): Length of the sequence. |
|
140
|
|
|
x (:obj:`numpy.ndarray`): Feature array, with shape (num_samples, num_features). |
|
141
|
|
|
y (:obj:`numpy.ndarray`): Label array, with shape (num_samples. num_classes). |
|
142
|
|
|
start (:obj:`int`): Start index. |
|
143
|
|
|
end (:obj:`int`): End index |
|
144
|
|
|
|
|
145
|
|
|
Returns: |
|
146
|
|
|
(seq_x, seq_y) if y is provided, or seq_x if y is not provided. |
|
147
|
|
|
seq_x is a numpy array of shape (num_samples, seq_len, num_features), and seq_y is a numpy array |
|
148
|
|
|
of shape (num_samples, num_classes). |
|
149
|
|
|
num_samples is bounded by the value of start and end. |
|
150
|
|
|
If start or end are not specified, the code will use the full data provided, so that the |
|
151
|
|
|
array returned has (num_samples - seq_len) of samples. |
|
152
|
|
|
""" |
|
153
|
|
|
if start is None or end is None: |
|
154
|
|
|
start = 0 |
|
155
|
|
|
end = x.shape[0] - length |
|
156
|
|
|
if (start+length) > x.shape[0] or (end+length) > x.shape[0]: |
|
157
|
|
|
logger.error('start/end out of bound.') |
|
158
|
|
|
return None |
|
159
|
|
|
batch_x = np.zeros((end - start, length, x.shape[1]), np.float32) |
|
160
|
|
|
for i in range(start, end): |
|
161
|
|
|
batch_x[i-start, :, :] = x[i:i + length, :] |
|
162
|
|
|
return_tuple = tuple([batch_x]) |
|
163
|
|
|
if y is not None: |
|
164
|
|
|
batch_y = np.zeros((end - start, length, y.shape[1]), np.float32) |
|
165
|
|
|
for i in range(start, end): |
|
166
|
|
|
batch_y[i-start, :, :] = y[i:i + length, :] |
|
167
|
|
|
return_tuple += tuple([batch_y]) |
|
168
|
|
|
if with_seq: |
|
169
|
|
|
seq_ar = np.zeros((end - start,), np.float32) |
|
170
|
|
|
seq_ar[:] = length |
|
171
|
|
|
return_tuple += tuple([seq_ar]) |
|
172
|
|
|
return return_tuple |
|
173
|
|
|
|
|
174
|
|
|
|
|
175
|
|
|
class SkipGramInjector: |
|
176
|
|
|
"""Skip-Gram Batch Injector |
|
177
|
|
|
|
|
178
|
|
|
It generates a k-skip-2-gram sets based on input sequence |
|
179
|
|
|
|
|
180
|
|
|
Args: |
|
181
|
|
|
data_x (:obj:`np.ndarray`): 1D array of integer index. |
|
182
|
|
|
batch_size (:obj:`int`): Size of each batch to be generated. |
|
183
|
|
|
num_skips (:obj:`int`): How many times to re-use an input to generate a label. |
|
184
|
|
|
skip_window (:obj:`int`): How many items to consider left or right. |
|
185
|
|
|
|
|
186
|
|
|
Attributes: |
|
187
|
|
|
data_x (:obj:`np.ndarray`): 1D array of integer index. |
|
188
|
|
|
batch_size (:obj:`int`): Size of each batch to be generated. |
|
189
|
|
|
num_skips (:obj:`int`): How many times to re-use an input to generate a label. |
|
190
|
|
|
skip_window (:obj:`int`): How many items to consider left or right. |
|
191
|
|
|
data_index (:obj:`int`): Current index used to generate next batch. |
|
192
|
|
|
""" |
|
193
|
|
|
def __init__(self, data_x, batch_size, num_skips, skip_window): |
|
194
|
|
|
assert batch_size % num_skips == 0 |
|
195
|
|
|
assert num_skips <= 2 * skip_window |
|
196
|
|
|
self.data_x = data_x |
|
197
|
|
|
self.batch_size = batch_size |
|
198
|
|
|
self.num_skips = num_skips |
|
199
|
|
|
self.skip_window = skip_window |
|
200
|
|
|
self.data_index = 0 |
|
201
|
|
|
|
|
202
|
|
|
def next_batch(self): |
|
203
|
|
|
"""Get Next Batch |
|
204
|
|
|
""" |
|
205
|
|
|
# Initialize batch and label array |
|
206
|
|
|
batch = np.ndarray(shape=(self.batch_size), dtype=np.int32) |
|
207
|
|
|
labels = np.ndarray(shape=(self.batch_size, 1), dtype=np.int32) |
|
208
|
|
|
# span is the size of window we are sampling from |
|
209
|
|
|
span = 2 * self.skip_window + 1 # [ skip_window target skip_window ] |
|
210
|
|
|
# Add data in the buffer to a queue |
|
211
|
|
|
buffer = collections.deque(maxlen=span) |
|
212
|
|
|
for _ in range(span): |
|
213
|
|
|
buffer.append(self.data_x[self.data_index]) |
|
214
|
|
|
self.data_index = (self.data_index + 1) % len(self.data_x) |
|
215
|
|
|
# Now, populate the k-skip-2-gram data-label pair with random sampling |
|
216
|
|
|
for i in range(self.batch_size // self.num_skips): |
|
217
|
|
|
target = self.skip_window # target label at the center of the buffer |
|
218
|
|
|
targets_to_avoid = [self.skip_window] |
|
219
|
|
|
for j in range(self.num_skips): |
|
220
|
|
|
while target in targets_to_avoid: |
|
221
|
|
|
target = random.randint(0, span - 1) |
|
222
|
|
|
targets_to_avoid.append(target) |
|
223
|
|
|
batch[i * self.num_skips + j] = buffer[self.skip_window] |
|
224
|
|
|
labels[i * self.num_skips + j, 0] = buffer[target] |
|
225
|
|
|
buffer.append(self.data_x[self.data_index]) |
|
226
|
|
|
self.data_index = (self.data_index + 1) % len(self.data_x) |
|
227
|
|
|
# Backtrack a little bit to avoid skipping words in the end of a batch |
|
228
|
|
|
self.data_index = (self.data_index + len(self.data_x) - span) % len(self.data_x) |
|
229
|
|
|
return batch, labels |
|
230
|
|
|
|