Spomky-Labs /
jose
These results are based on our legacy PHP analysis, consider migrating to our new PHP analysis engine instead. Learn more
| 1 | <?php |
||
| 2 | |||
| 3 | /* |
||
| 4 | * The MIT License (MIT) |
||
| 5 | * |
||
| 6 | * Copyright (c) 2014-2016 Spomky-Labs |
||
| 7 | * |
||
| 8 | * This software may be modified and distributed under the terms |
||
| 9 | * of the MIT license. See the LICENSE file for details. |
||
| 10 | */ |
||
| 11 | |||
| 12 | namespace Jose\Util; |
||
| 13 | |||
| 14 | class BigInteger |
||
| 15 | { |
||
| 16 | const MONTGOMERY = 0; |
||
| 17 | |||
| 18 | const BARRETT = 1; |
||
| 19 | |||
| 20 | const POWEROF2 = 2; |
||
| 21 | |||
| 22 | const CLASSIC = 3; |
||
| 23 | |||
| 24 | const NONE = 4; |
||
| 25 | |||
| 26 | /**#@+ |
||
| 27 | * Array constants |
||
| 28 | * |
||
| 29 | * Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and |
||
| 30 | * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them. |
||
| 31 | * |
||
| 32 | */ |
||
| 33 | /** |
||
| 34 | * $result[self::VALUE] contains the value. |
||
| 35 | */ |
||
| 36 | const VALUE = 0; |
||
| 37 | /** |
||
| 38 | * $result[self::SIGN] contains the sign. |
||
| 39 | */ |
||
| 40 | const SIGN = 1; |
||
| 41 | /**#@-*/ |
||
| 42 | |||
| 43 | /**#@+ |
||
| 44 | */ |
||
| 45 | /** |
||
| 46 | * Cache constants. |
||
| 47 | * |
||
| 48 | * $cache[self::VARIABLE] tells us whether or not the cached data is still valid. |
||
| 49 | */ |
||
| 50 | const VARIABLE = 0; |
||
| 51 | /** |
||
| 52 | * $cache[self::DATA] contains the cached data. |
||
| 53 | */ |
||
| 54 | const DATA = 1; |
||
| 55 | /**#@-*/ |
||
| 56 | |||
| 57 | /** |
||
| 58 | * Karatsuba Cutoff. |
||
| 59 | * |
||
| 60 | * At what point do we switch between Karatsuba multiplication and schoolbook long multiplication? |
||
| 61 | */ |
||
| 62 | const KARATSUBA_CUTOFF = 25; |
||
| 63 | |||
| 64 | /**#@+ |
||
| 65 | * Static properties used by the pure-PHP implementation. |
||
| 66 | * |
||
| 67 | * @see __construct() |
||
| 68 | */ |
||
| 69 | protected static $base; |
||
| 70 | protected static $baseFull; |
||
| 71 | protected static $maxDigit; |
||
| 72 | protected static $msb; |
||
| 73 | |||
| 74 | /** |
||
| 75 | * $max10 in greatest $max10Len satisfying |
||
| 76 | * $max10 = 10**$max10Len <= 2**$base. |
||
| 77 | */ |
||
| 78 | protected static $max10; |
||
| 79 | |||
| 80 | /** |
||
| 81 | * $max10Len in greatest $max10Len satisfying |
||
| 82 | * $max10 = 10**$max10Len <= 2**$base. |
||
| 83 | */ |
||
| 84 | protected static $max10Len; |
||
| 85 | protected static $maxDigit2; |
||
| 86 | /**#@-*/ |
||
| 87 | |||
| 88 | /** |
||
| 89 | * Holds the BigInteger's value. |
||
| 90 | * |
||
| 91 | * @var array |
||
| 92 | */ |
||
| 93 | private $value; |
||
| 94 | |||
| 95 | /** |
||
| 96 | * Holds the BigInteger's magnitude. |
||
| 97 | * |
||
| 98 | * @var bool |
||
| 99 | */ |
||
| 100 | private $is_negative = false; |
||
| 101 | |||
| 102 | /** |
||
| 103 | * Precision. |
||
| 104 | */ |
||
| 105 | private $precision = -1; |
||
| 106 | |||
| 107 | /** |
||
| 108 | * Precision Bitmask. |
||
| 109 | */ |
||
| 110 | private $bitmask = false; |
||
| 111 | |||
| 112 | /** |
||
| 113 | * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
||
| 114 | * |
||
| 115 | * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
||
| 116 | * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
||
| 117 | * |
||
| 118 | * Here's an example: |
||
| 119 | * <code> |
||
| 120 | * <?php |
||
| 121 | * $a = new \Jose\Util\in base-16 |
||
| 122 | * |
||
| 123 | * echo $a->toString(); // outputs 50 |
||
| 124 | * ?> |
||
| 125 | * </code> |
||
| 126 | * |
||
| 127 | * @param $x base-10 number or base-$base number if $base set. |
||
| 128 | * @param int $base |
||
| 129 | * |
||
| 130 | * @return \Jose\Util\BigInteger |
||
| 131 | */ |
||
| 132 | public function __construct($x = 0, $base = 10) |
||
| 133 | { |
||
| 134 | if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
||
| 135 | define('MATH_BIGINTEGER_OPENSSL_ENABLED', true); |
||
| 136 | } |
||
| 137 | |||
| 138 | switch (true) { |
||
| 139 | case is_resource($x) && get_resource_type($x) == 'GMP integer': |
||
| 140 | // PHP 5.6 switched GMP from using resources to objects |
||
| 141 | case $x instanceof \GMP: |
||
| 142 | $this->value = $x; |
||
| 143 | |||
| 144 | return; |
||
| 145 | } |
||
| 146 | $this->value = gmp_init(0); |
||
| 147 | |||
| 148 | // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
||
| 149 | // '0' is the only value like this per http://php.net/empty |
||
| 150 | if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
||
| 151 | return; |
||
| 152 | } |
||
| 153 | |||
| 154 | switch ($base) { |
||
| 155 | case -256: |
||
| 156 | if (ord($x[0]) & 0x80) { |
||
| 157 | $x = ~$x; |
||
| 158 | $this->is_negative = true; |
||
| 159 | } |
||
| 160 | case 256: |
||
| 161 | $sign = $this->is_negative ? '-' : ''; |
||
| 162 | $this->value = gmp_init($sign.'0x'.bin2hex($x)); |
||
| 163 | |||
| 164 | if ($this->is_negative) { |
||
| 165 | $this->is_negative = false; |
||
| 166 | $temp = $this->add(new static('-1')); |
||
| 167 | $this->value = $temp->value; |
||
| 168 | } |
||
| 169 | break; |
||
| 170 | case 16: |
||
| 171 | case -16: |
||
| 172 | if ($base > 0 && $x[0] == '-') { |
||
| 173 | $this->is_negative = true; |
||
| 174 | $x = substr($x, 1); |
||
| 175 | } |
||
| 176 | |||
| 177 | $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); |
||
| 178 | |||
| 179 | $is_negative = false; |
||
| 180 | if ($base < 0 && hexdec($x[0]) >= 8) { |
||
| 181 | $this->is_negative = $is_negative = true; |
||
| 182 | $x = bin2hex(~hex2bin($x)); |
||
| 183 | } |
||
| 184 | |||
| 185 | $temp = $this->is_negative ? '-0x'.$x : '0x'.$x; |
||
| 186 | $this->value = gmp_init($temp); |
||
| 187 | $this->is_negative = false; |
||
| 188 | |||
| 189 | if ($is_negative) { |
||
| 190 | $temp = $this->add(new static('-1')); |
||
| 191 | $this->value = $temp->value; |
||
| 192 | } |
||
| 193 | break; |
||
| 194 | case 10: |
||
| 195 | case -10: |
||
| 196 | // (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
||
| 197 | // (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
||
| 198 | // [^-0-9].*: find any non-numeric characters and then any characters that follow that |
||
| 199 | $x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
||
| 200 | |||
| 201 | $this->value = gmp_init($x); |
||
| 202 | break; |
||
| 203 | case 2: // base-2 support originally implemented by Lluis Pamies - thanks! |
||
| 204 | case -2: |
||
| 205 | if ($base > 0 && $x[0] == '-') { |
||
| 206 | $this->is_negative = true; |
||
| 207 | $x = substr($x, 1); |
||
| 208 | } |
||
| 209 | |||
| 210 | $x = preg_replace('#^([01]*).*#', '$1', $x); |
||
| 211 | $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT); |
||
| 212 | |||
| 213 | $str = '0x'; |
||
| 214 | while (strlen($x)) { |
||
| 215 | $part = substr($x, 0, 4); |
||
| 216 | $str .= dechex(bindec($part)); |
||
| 217 | $x = substr($x, 4); |
||
| 218 | } |
||
| 219 | |||
| 220 | if ($this->is_negative) { |
||
| 221 | $str = '-'.$str; |
||
| 222 | } |
||
| 223 | |||
| 224 | $temp = new static($str, 8 * $base); // ie. either -16 or +16 |
||
| 225 | $this->value = $temp->value; |
||
| 226 | $this->is_negative = $temp->is_negative; |
||
| 227 | |||
| 228 | break; |
||
| 229 | default: |
||
| 230 | // base not supported, so we'll let $this == 0 |
||
| 231 | } |
||
| 232 | } |
||
| 233 | |||
| 234 | /** |
||
| 235 | * Converts a BigInteger to a byte string (eg. base-256). |
||
| 236 | * |
||
| 237 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 238 | * saved as two's compliment. |
||
| 239 | * |
||
| 240 | * Here's an example: |
||
| 241 | * <code> |
||
| 242 | * <?php |
||
| 243 | * $a = new \Jose\Util\ger('65'); |
||
| 244 | * |
||
| 245 | * echo $a->toBytes(); // outputs chr(65) |
||
| 246 | * ?> |
||
| 247 | * </code> |
||
| 248 | * |
||
| 249 | * @param bool $twos_compliment |
||
| 250 | * |
||
| 251 | * @return string |
||
| 252 | * |
||
| 253 | */ |
||
| 254 | public function toBytes($twos_compliment = false) |
||
| 255 | { |
||
| 256 | if ($twos_compliment) { |
||
| 257 | $comparison = $this->compare(new static()); |
||
| 258 | if ($comparison == 0) { |
||
| 259 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 260 | } |
||
| 261 | |||
| 262 | $temp = $comparison < 0 ? $this->add(new static(1)) : $this; |
||
| 263 | $bytes = $temp->toBytes(); |
||
| 264 | |||
| 265 | if (empty($bytes)) { // eg. if the number we're trying to convert is -1 |
||
| 266 | $bytes = chr(0); |
||
| 267 | } |
||
| 268 | |||
| 269 | if (ord($bytes[0]) & 0x80) { |
||
| 270 | $bytes = chr(0).$bytes; |
||
| 271 | } |
||
| 272 | |||
| 273 | return $comparison < 0 ? ~$bytes : $bytes; |
||
| 274 | } |
||
| 275 | |||
| 276 | if (gmp_cmp($this->value, gmp_init(0)) == 0) { |
||
| 277 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
| 278 | } |
||
| 279 | |||
| 280 | $temp = gmp_strval(gmp_abs($this->value), 16); |
||
| 281 | $temp = (strlen($temp) & 1) ? '0'.$temp : $temp; |
||
| 282 | $temp = hex2bin($temp); |
||
| 283 | |||
| 284 | return $this->precision > 0 ? |
||
| 285 | substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : |
||
| 286 | ltrim($temp, chr(0)); |
||
| 287 | } |
||
| 288 | |||
| 289 | /** |
||
| 290 | * Converts a BigInteger to a hex string (eg. base-16)). |
||
| 291 | * |
||
| 292 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 293 | * saved as two's compliment. |
||
| 294 | * |
||
| 295 | * Here's an example: |
||
| 296 | * <code> |
||
| 297 | * <?php |
||
| 298 | * $a = new \Jose\Util\ger('65'); |
||
| 299 | * |
||
| 300 | * echo $a->toHex(); // outputs '41' |
||
| 301 | * ?> |
||
| 302 | * </code> |
||
| 303 | * |
||
| 304 | * @param bool $twos_compliment |
||
| 305 | * |
||
| 306 | * @return string |
||
| 307 | * |
||
| 308 | */ |
||
| 309 | public function toHex($twos_compliment = false) |
||
| 310 | { |
||
| 311 | return bin2hex($this->toBytes($twos_compliment)); |
||
| 312 | } |
||
| 313 | |||
| 314 | /** |
||
| 315 | * Converts a BigInteger to a bit string (eg. base-2). |
||
| 316 | * |
||
| 317 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
| 318 | * saved as two's compliment. |
||
| 319 | * |
||
| 320 | * Here's an example: |
||
| 321 | * <code> |
||
| 322 | * <?php |
||
| 323 | * $a = new \Jose\Util\ger('65'); |
||
| 324 | * |
||
| 325 | * echo $a->toBits(); // outputs '1000001' |
||
| 326 | * ?> |
||
| 327 | * </code> |
||
| 328 | * |
||
| 329 | * @param bool $twos_compliment |
||
| 330 | * |
||
| 331 | * @return string |
||
| 332 | * |
||
| 333 | */ |
||
| 334 | public function toBits($twos_compliment = false) |
||
| 335 | { |
||
| 336 | $hex = $this->toHex($twos_compliment); |
||
| 337 | $bits = ''; |
||
| 338 | for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i -= 8) { |
||
| 339 | $bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT).$bits; |
||
| 340 | } |
||
| 341 | if ($start) { // hexdec('') == 0 |
||
| 342 | $bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT).$bits; |
||
| 343 | } |
||
| 344 | $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0'); |
||
| 345 | |||
| 346 | if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) { |
||
| 347 | return '0'.$result; |
||
| 348 | } |
||
| 349 | |||
| 350 | return $result; |
||
| 351 | } |
||
| 352 | |||
| 353 | /** |
||
| 354 | * Adds two BigIntegers. |
||
| 355 | * |
||
| 356 | * Here's an example: |
||
| 357 | * <code> |
||
| 358 | * <?php |
||
| 359 | * $a = new \Jose\Util\ger('10'); |
||
| 360 | * $b = new \Jose\Util\ger('20'); |
||
| 361 | * |
||
| 362 | * $c = $a->add($b); |
||
| 363 | * |
||
| 364 | * echo $c->toString(); // outputs 30 |
||
| 365 | * ?> |
||
| 366 | * </code> |
||
| 367 | * |
||
| 368 | * @param \Jose\Util\Integer $y |
||
| 369 | * |
||
| 370 | * @return \Jose\Util\BigInteger |
||
| 371 | * |
||
| 372 | */ |
||
| 373 | public function add(BigInteger $y) |
||
| 374 | { |
||
| 375 | $temp = new static(); |
||
| 376 | $temp->value = gmp_add($this->value, $y->value); |
||
| 377 | |||
| 378 | return $this->_normalize($temp); |
||
| 379 | } |
||
| 380 | |||
| 381 | /** |
||
| 382 | * Performs addition. |
||
| 383 | * |
||
| 384 | * @param array $x_value |
||
| 385 | * @param bool $x_negative |
||
| 386 | * @param array $y_value |
||
| 387 | * @param bool $y_negative |
||
| 388 | * |
||
| 389 | * @return array |
||
| 390 | */ |
||
| 391 | private static function _add($x_value, $x_negative, $y_value, $y_negative) |
||
| 392 | { |
||
| 393 | $x_size = count($x_value); |
||
| 394 | $y_size = count($y_value); |
||
| 395 | |||
| 396 | if ($x_size == 0) { |
||
| 397 | return [ |
||
| 398 | self::VALUE => $y_value, |
||
| 399 | self::SIGN => $y_negative, |
||
| 400 | ]; |
||
| 401 | } elseif ($y_size == 0) { |
||
| 402 | return [ |
||
| 403 | self::VALUE => $x_value, |
||
| 404 | self::SIGN => $x_negative, |
||
| 405 | ]; |
||
| 406 | } |
||
| 407 | |||
| 408 | // subtract, if appropriate |
||
| 409 | if ($x_negative != $y_negative) { |
||
| 410 | if ($x_value == $y_value) { |
||
| 411 | return [ |
||
| 412 | self::VALUE => [], |
||
| 413 | self::SIGN => false, |
||
| 414 | ]; |
||
| 415 | } |
||
| 416 | |||
| 417 | $temp = self::_subtract($x_value, false, $y_value, false); |
||
| 418 | $temp[self::SIGN] = self::_compare($x_value, false, $y_value, false) > 0 ? |
||
| 419 | $x_negative : $y_negative; |
||
| 420 | |||
| 421 | return $temp; |
||
| 422 | } |
||
| 423 | |||
| 424 | if ($x_size < $y_size) { |
||
| 425 | $size = $x_size; |
||
| 426 | $value = $y_value; |
||
| 427 | } else { |
||
| 428 | $size = $y_size; |
||
| 429 | $value = $x_value; |
||
| 430 | } |
||
| 431 | |||
| 432 | $value[count($value)] = 0; // just in case the carry adds an extra digit |
||
| 433 | |||
| 434 | $carry = 0; |
||
| 435 | for ($i = 0, $j = 1; $j < $size; $i += 2, $j += 2) { |
||
| 436 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] + $y_value[$j] * self::$baseFull + $y_value[$i] + $carry; |
||
| 437 | $carry = $sum >= self::$maxDigit2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
| 438 | $sum = $carry ? $sum - self::$maxDigit2 : $sum; |
||
| 439 | |||
| 440 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
| 441 | |||
| 442 | $value[$i] = (int) ($sum - self::$baseFull * $temp); // eg. a faster alternative to fmod($sum, 0x4000000) |
||
| 443 | $value[$j] = $temp; |
||
| 444 | } |
||
| 445 | |||
| 446 | if ($j == $size) { // ie. if $y_size is odd |
||
| 447 | $sum = $x_value[$i] + $y_value[$i] + $carry; |
||
| 448 | $carry = $sum >= self::$baseFull; |
||
| 449 | $value[$i] = $carry ? $sum - self::$baseFull : $sum; |
||
| 450 | ++$i; // ie. let $i = $j since we've just done $value[$i] |
||
| 451 | } |
||
| 452 | |||
| 453 | if ($carry) { |
||
| 454 | for (; $value[$i] == self::$maxDigit; ++$i) { |
||
| 455 | $value[$i] = 0; |
||
| 456 | } |
||
| 457 | ++$value[$i]; |
||
| 458 | } |
||
| 459 | |||
| 460 | return [ |
||
| 461 | self::VALUE => self::_trim($value), |
||
| 462 | self::SIGN => $x_negative, |
||
| 463 | ]; |
||
| 464 | } |
||
| 465 | |||
| 466 | /** |
||
| 467 | * Subtracts two BigIntegers. |
||
| 468 | * |
||
| 469 | * Here's an example: |
||
| 470 | * <code> |
||
| 471 | * <?php |
||
| 472 | * $a = new \Jose\Util\ger('10'); |
||
| 473 | * $b = new \Jose\Util\ger('20'); |
||
| 474 | * |
||
| 475 | * $c = $a->subtract($b); |
||
| 476 | * |
||
| 477 | * echo $c->toString(); // outputs -10 |
||
| 478 | * ?> |
||
| 479 | * </code> |
||
| 480 | * |
||
| 481 | * @param \Jose\Util\Integer $y |
||
| 482 | * |
||
| 483 | * @return \Jose\Util\BigInteger |
||
| 484 | * |
||
| 485 | */ |
||
| 486 | public function subtract(BigInteger $y) |
||
| 487 | { |
||
| 488 | $temp = new static(); |
||
| 489 | $temp->value = gmp_sub($this->value, $y->value); |
||
| 490 | |||
| 491 | return $this->_normalize($temp); |
||
| 492 | } |
||
| 493 | |||
| 494 | /** |
||
| 495 | * Performs subtraction. |
||
| 496 | * |
||
| 497 | * @param array $x_value |
||
| 498 | * @param bool $x_negative |
||
| 499 | * @param array $y_value |
||
| 500 | * @param bool $y_negative |
||
| 501 | * |
||
| 502 | * @return array |
||
| 503 | */ |
||
| 504 | private static function _subtract($x_value, $x_negative, $y_value, $y_negative) |
||
| 505 | { |
||
| 506 | $x_size = count($x_value); |
||
| 507 | $y_size = count($y_value); |
||
| 508 | |||
| 509 | if ($x_size == 0) { |
||
| 510 | return [ |
||
| 511 | self::VALUE => $y_value, |
||
| 512 | self::SIGN => !$y_negative, |
||
| 513 | ]; |
||
| 514 | } elseif ($y_size == 0) { |
||
| 515 | return [ |
||
| 516 | self::VALUE => $x_value, |
||
| 517 | self::SIGN => $x_negative, |
||
| 518 | ]; |
||
| 519 | } |
||
| 520 | |||
| 521 | // add, if appropriate (ie. -$x - +$y or +$x - -$y) |
||
| 522 | if ($x_negative != $y_negative) { |
||
| 523 | $temp = self::_add($x_value, false, $y_value, false); |
||
| 524 | $temp[self::SIGN] = $x_negative; |
||
| 525 | |||
| 526 | return $temp; |
||
| 527 | } |
||
| 528 | |||
| 529 | $diff = self::_compare($x_value, $x_negative, $y_value, $y_negative); |
||
| 530 | |||
| 531 | if (!$diff) { |
||
| 532 | return [ |
||
| 533 | self::VALUE => [], |
||
| 534 | self::SIGN => false, |
||
| 535 | ]; |
||
| 536 | } |
||
| 537 | |||
| 538 | // switch $x and $y around, if appropriate. |
||
| 539 | if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) { |
||
| 540 | $temp = $x_value; |
||
| 541 | $x_value = $y_value; |
||
| 542 | $y_value = $temp; |
||
| 543 | |||
| 544 | $x_negative = !$x_negative; |
||
| 545 | |||
| 546 | $x_size = count($x_value); |
||
| 547 | $y_size = count($y_value); |
||
| 548 | } |
||
| 549 | |||
| 550 | // at this point, $x_value should be at least as big as - if not bigger than - $y_value |
||
| 551 | |||
| 552 | $carry = 0; |
||
| 553 | for ($i = 0, $j = 1; $j < $y_size; $i += 2, $j += 2) { |
||
| 554 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] - $y_value[$j] * self::$baseFull - $y_value[$i] - $carry; |
||
| 555 | $carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
| 556 | $sum = $carry ? $sum + self::$maxDigit2 : $sum; |
||
| 557 | |||
| 558 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
| 559 | |||
| 560 | $x_value[$i] = (int) ($sum - self::$baseFull * $temp); |
||
| 561 | $x_value[$j] = $temp; |
||
| 562 | } |
||
| 563 | |||
| 564 | if ($j == $y_size) { // ie. if $y_size is odd |
||
| 565 | $sum = $x_value[$i] - $y_value[$i] - $carry; |
||
| 566 | $carry = $sum < 0; |
||
| 567 | $x_value[$i] = $carry ? $sum + self::$baseFull : $sum; |
||
| 568 | ++$i; |
||
| 569 | } |
||
| 570 | |||
| 571 | if ($carry) { |
||
| 572 | for (; !$x_value[$i]; ++$i) { |
||
| 573 | $x_value[$i] = self::$maxDigit; |
||
| 574 | } |
||
| 575 | --$x_value[$i]; |
||
| 576 | } |
||
| 577 | |||
| 578 | return [ |
||
| 579 | self::VALUE => self::_trim($x_value), |
||
| 580 | self::SIGN => $x_negative, |
||
| 581 | ]; |
||
| 582 | } |
||
| 583 | |||
| 584 | /** |
||
| 585 | * Multiplies two BigIntegers. |
||
| 586 | * |
||
| 587 | * Here's an example: |
||
| 588 | * <code> |
||
| 589 | * <?php |
||
| 590 | * $a = new \Jose\Util\ger('10'); |
||
| 591 | * $b = new \Jose\Util\ger('20'); |
||
| 592 | * |
||
| 593 | * $c = $a->multiply($b); |
||
| 594 | * |
||
| 595 | * echo $c->toString(); // outputs 200 |
||
| 596 | * ?> |
||
| 597 | * </code> |
||
| 598 | * |
||
| 599 | * @param \Jose\Util\Integer $x |
||
| 600 | * |
||
| 601 | * @return \Jose\Util\BigInteger |
||
| 602 | */ |
||
| 603 | public function multiply(BigInteger $x) |
||
| 604 | { |
||
| 605 | $temp = new static(); |
||
| 606 | $temp->value = gmp_mul($this->value, $x->value); |
||
| 607 | |||
| 608 | return $this->_normalize($temp); |
||
| 609 | } |
||
| 610 | |||
| 611 | /** |
||
| 612 | * Performs multiplication. |
||
| 613 | * |
||
| 614 | * @param array $x_value |
||
| 615 | * @param bool $x_negative |
||
| 616 | * @param array $y_value |
||
| 617 | * @param bool $y_negative |
||
| 618 | * |
||
| 619 | * @return array |
||
| 620 | */ |
||
| 621 | private static function _multiply($x_value, $x_negative, $y_value, $y_negative) |
||
| 622 | { |
||
| 623 | $x_length = count($x_value); |
||
| 624 | $y_length = count($y_value); |
||
| 625 | |||
| 626 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 627 | return [ |
||
| 628 | self::VALUE => [], |
||
| 629 | self::SIGN => false, |
||
| 630 | ]; |
||
| 631 | } |
||
| 632 | |||
| 633 | return [ |
||
| 634 | self::VALUE => min($x_length, $y_length) < 2 * self::KARATSUBA_CUTOFF ? |
||
| 635 | self::_trim(self::_regularMultiply($x_value, $y_value)) : |
||
| 636 | self::_trim(self::_karatsuba($x_value, $y_value)), |
||
| 637 | self::SIGN => $x_negative != $y_negative, |
||
| 638 | ]; |
||
| 639 | } |
||
| 640 | |||
| 641 | /** |
||
| 642 | * Performs long multiplication on two BigIntegers. |
||
| 643 | * |
||
| 644 | * Modeled after 'multiply' in MutableBigInteger.java. |
||
| 645 | * |
||
| 646 | * @param array $x_value |
||
| 647 | * @param array $y_value |
||
| 648 | * |
||
| 649 | * @return array |
||
| 650 | */ |
||
| 651 | private static function _regularMultiply($x_value, $y_value) |
||
| 652 | { |
||
| 653 | $x_length = count($x_value); |
||
| 654 | $y_length = count($y_value); |
||
| 655 | |||
| 656 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 657 | return []; |
||
| 658 | } |
||
| 659 | |||
| 660 | if ($x_length < $y_length) { |
||
| 661 | $temp = $x_value; |
||
| 662 | $x_value = $y_value; |
||
| 663 | $y_value = $temp; |
||
| 664 | |||
| 665 | $x_length = count($x_value); |
||
| 666 | $y_length = count($y_value); |
||
| 667 | } |
||
| 668 | |||
| 669 | $product_value = self::_array_repeat(0, $x_length + $y_length); |
||
| 670 | |||
| 671 | // the following for loop could be removed if the for loop following it |
||
| 672 | // (the one with nested for loops) initially set $i to 0, but |
||
| 673 | // doing so would also make the result in one set of unnecessary adds, |
||
| 674 | // since on the outermost loops first pass, $product->value[$k] is going |
||
| 675 | // to always be 0 |
||
| 676 | |||
| 677 | $carry = 0; |
||
| 678 | |||
| 679 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0 |
||
| 680 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
| 681 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 682 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
| 683 | } |
||
| 684 | |||
| 685 | $product_value[$j] = $carry; |
||
| 686 | |||
| 687 | // the above for loop is what the previous comment was talking about. the |
||
| 688 | // following for loop is the "one with nested for loops" |
||
| 689 | for ($i = 1; $i < $y_length; ++$i) { |
||
| 690 | $carry = 0; |
||
| 691 | |||
| 692 | for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) { |
||
| 693 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
| 694 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 695 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 696 | } |
||
| 697 | |||
| 698 | $product_value[$k] = $carry; |
||
| 699 | } |
||
| 700 | |||
| 701 | return $product_value; |
||
| 702 | } |
||
| 703 | |||
| 704 | /** |
||
| 705 | * Performs Karatsuba multiplication on two BigIntegers. |
||
| 706 | * |
||
| 707 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
| 708 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}. |
||
| 709 | * |
||
| 710 | * @param array $x_value |
||
| 711 | * @param array $y_value |
||
| 712 | * |
||
| 713 | * @return array |
||
| 714 | */ |
||
| 715 | private static function _karatsuba($x_value, $y_value) |
||
| 716 | { |
||
| 717 | $m = min(count($x_value) >> 1, count($y_value) >> 1); |
||
| 718 | |||
| 719 | if ($m < self::KARATSUBA_CUTOFF) { |
||
| 720 | return self::_regularMultiply($x_value, $y_value); |
||
| 721 | } |
||
| 722 | |||
| 723 | $x1 = array_slice($x_value, $m); |
||
| 724 | $x0 = array_slice($x_value, 0, $m); |
||
| 725 | $y1 = array_slice($y_value, $m); |
||
| 726 | $y0 = array_slice($y_value, 0, $m); |
||
| 727 | |||
| 728 | $z2 = self::_karatsuba($x1, $y1); |
||
| 729 | $z0 = self::_karatsuba($x0, $y0); |
||
| 730 | |||
| 731 | $z1 = self::_add($x1, false, $x0, false); |
||
| 732 | $temp = self::_add($y1, false, $y0, false); |
||
| 733 | $z1 = self::_karatsuba($z1[self::VALUE], $temp[self::VALUE]); |
||
| 734 | $temp = self::_add($z2, false, $z0, false); |
||
| 735 | $z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
||
| 736 | |||
| 737 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
| 738 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
| 739 | |||
| 740 | $xy = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
| 741 | $xy = self::_add($xy[self::VALUE], $xy[self::SIGN], $z0, false); |
||
| 742 | |||
| 743 | return $xy[self::VALUE]; |
||
| 744 | } |
||
| 745 | |||
| 746 | /** |
||
| 747 | * Performs squaring. |
||
| 748 | * |
||
| 749 | * @param array $x |
||
| 750 | * |
||
| 751 | * @return array |
||
| 752 | */ |
||
| 753 | private static function _square($x = false) |
||
| 754 | { |
||
| 755 | return count($x) < 2 * self::KARATSUBA_CUTOFF ? |
||
| 756 | self::_trim(self::_baseSquare($x)) : |
||
| 757 | self::_trim(self::_karatsubaSquare($x)); |
||
| 758 | } |
||
| 759 | |||
| 760 | /** |
||
| 761 | * Performs traditional squaring on two BigIntegers. |
||
| 762 | * |
||
| 763 | * Squaring can be done faster than multiplying a number by itself can be. See |
||
| 764 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} / |
||
| 765 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information. |
||
| 766 | * |
||
| 767 | * @param array $value |
||
| 768 | * |
||
| 769 | * @return array |
||
| 770 | */ |
||
| 771 | private static function _baseSquare($value) |
||
| 772 | { |
||
| 773 | if (empty($value)) { |
||
| 774 | return []; |
||
| 775 | } |
||
| 776 | $square_value = self::_array_repeat(0, 2 * count($value)); |
||
| 777 | |||
| 778 | for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) { |
||
| 779 | $i2 = $i << 1; |
||
| 780 | |||
| 781 | $temp = $square_value[$i2] + $value[$i] * $value[$i]; |
||
| 782 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 783 | $square_value[$i2] = (int) ($temp - self::$baseFull * $carry); |
||
| 784 | |||
| 785 | // note how we start from $i+1 instead of 0 as we do in multiplication. |
||
| 786 | for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) { |
||
| 787 | $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry; |
||
| 788 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 789 | $square_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 790 | } |
||
| 791 | |||
| 792 | // the following line can yield values larger 2**15. at this point, PHP should switch |
||
| 793 | // over to floats. |
||
| 794 | $square_value[$i + $max_index + 1] = $carry; |
||
| 795 | } |
||
| 796 | |||
| 797 | return $square_value; |
||
| 798 | } |
||
| 799 | |||
| 800 | /** |
||
| 801 | * Performs Karatsuba "squaring" on two BigIntegers. |
||
| 802 | * |
||
| 803 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
| 804 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}. |
||
| 805 | * |
||
| 806 | * @param array $value |
||
| 807 | * |
||
| 808 | * @return array |
||
| 809 | */ |
||
| 810 | private static function _karatsubaSquare($value) |
||
| 811 | { |
||
| 812 | $m = count($value) >> 1; |
||
| 813 | |||
| 814 | if ($m < self::KARATSUBA_CUTOFF) { |
||
| 815 | return self::_baseSquare($value); |
||
| 816 | } |
||
| 817 | |||
| 818 | $x1 = array_slice($value, $m); |
||
| 819 | $x0 = array_slice($value, 0, $m); |
||
| 820 | |||
| 821 | $z2 = self::_karatsubaSquare($x1); |
||
| 822 | $z0 = self::_karatsubaSquare($x0); |
||
| 823 | |||
| 824 | $z1 = self::_add($x1, false, $x0, false); |
||
| 825 | $z1 = self::_karatsubaSquare($z1[self::VALUE]); |
||
| 826 | $temp = self::_add($z2, false, $z0, false); |
||
| 827 | $z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
||
| 828 | |||
| 829 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
| 830 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
| 831 | |||
| 832 | $xx = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
| 833 | $xx = self::_add($xx[self::VALUE], $xx[self::SIGN], $z0, false); |
||
| 834 | |||
| 835 | return $xx[self::VALUE]; |
||
| 836 | } |
||
| 837 | |||
| 838 | /** |
||
| 839 | * Divides two BigIntegers. |
||
| 840 | * |
||
| 841 | * Returns an array whose first element contains the quotient and whose second element contains the |
||
| 842 | * "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
||
| 843 | * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
||
| 844 | * and the divisor (basically, the "common residue" is the first positive modulo). |
||
| 845 | * |
||
| 846 | * Here's an example: |
||
| 847 | * <code> |
||
| 848 | * <?php |
||
| 849 | * $a = new \Jose\Util\ger('10'); |
||
| 850 | * $b = new \Jose\Util\ger('20'); |
||
| 851 | * |
||
| 852 | * list($quotient, $remainder) = $a->divide($b); |
||
| 853 | * |
||
| 854 | * echo $quotient->toString(); // outputs 0 |
||
| 855 | * echo "\r\n"; |
||
| 856 | * echo $remainder->toString(); // outputs 10 |
||
| 857 | * ?> |
||
| 858 | * </code> |
||
| 859 | * |
||
| 860 | * @param \Jose\Util\Integer $y |
||
| 861 | * |
||
| 862 | * @return array |
||
| 863 | * |
||
| 864 | */ |
||
| 865 | public function divide(BigInteger $y) |
||
| 866 | { |
||
| 867 | $quotient = new static(); |
||
| 868 | $remainder = new static(); |
||
| 869 | |||
| 870 | list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
||
| 871 | |||
| 872 | if (gmp_sign($remainder->value) < 0) { |
||
| 873 | $remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
||
| 874 | } |
||
| 875 | |||
| 876 | return [$this->_normalize($quotient), $this->_normalize($remainder)]; |
||
| 877 | } |
||
| 878 | |||
| 879 | /** |
||
| 880 | * Divides a BigInteger by a regular integer. |
||
| 881 | * |
||
| 882 | * abc / x = a00 / x + b0 / x + c / x |
||
| 883 | * |
||
| 884 | * @param array $dividend |
||
| 885 | * @param array $divisor |
||
| 886 | * |
||
| 887 | * @return array |
||
| 888 | */ |
||
| 889 | private static function _divide_digit($dividend, $divisor) |
||
| 890 | { |
||
| 891 | $carry = 0; |
||
| 892 | $result = []; |
||
| 893 | |||
| 894 | for ($i = count($dividend) - 1; $i >= 0; --$i) { |
||
| 895 | $temp = self::$baseFull * $carry + $dividend[$i]; |
||
| 896 | $result[$i] = self::_safe_divide($temp, $divisor); |
||
| 897 | $carry = (int) ($temp - $divisor * $result[$i]); |
||
| 898 | } |
||
| 899 | |||
| 900 | return [$result, $carry]; |
||
| 901 | } |
||
| 902 | |||
| 903 | /** |
||
| 904 | * Performs modular exponentiation. |
||
| 905 | * |
||
| 906 | * Here's an example: |
||
| 907 | * <code> |
||
| 908 | * <?php |
||
| 909 | * $a = new \Jose\Util\ger('10'); |
||
| 910 | * $b = new \Jose\Util\ger('20'); |
||
| 911 | * $c = new \Jose\Util\ger('30'); |
||
| 912 | * |
||
| 913 | * $c = $a->modPow($b, $c); |
||
| 914 | * |
||
| 915 | * echo $c->toString(); // outputs 10 |
||
| 916 | * ?> |
||
| 917 | * </code> |
||
| 918 | * |
||
| 919 | * @param \Jose\Util\Integer $e |
||
| 920 | * @param \Jose\Util\Integer $n |
||
| 921 | * |
||
| 922 | * @return \Jose\Util\BigInteger |
||
| 923 | * |
||
| 924 | * and although the approach involving repeated squaring does vastly better, it, too, is impractical |
||
| 925 | * for our purposes. The reason being that division - by far the most complicated and time-consuming |
||
| 926 | * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
||
| 927 | * |
||
| 928 | * Modular reductions resolve this issue. Although an individual modular reduction takes more time |
||
| 929 | * then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
||
| 930 | * |
||
| 931 | * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
||
| 932 | * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
||
| 933 | * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
||
| 934 | * the product of two odd numbers is odd), but what about when RSA isn't used? |
||
| 935 | * |
||
| 936 | * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
||
| 937 | * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
||
| 938 | * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
||
| 939 | * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
||
| 940 | * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
||
| 941 | * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
||
| 942 | */ |
||
| 943 | public function modPow(BigInteger $e, BigInteger $n) |
||
| 944 | { |
||
| 945 | $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs(); |
||
| 946 | |||
| 947 | if ($e->compare(new static()) < 0) { |
||
| 948 | $e = $e->abs(); |
||
| 949 | |||
| 950 | $temp = $this->modInverse($n); |
||
| 951 | if ($temp === false) { |
||
| 952 | return false; |
||
| 953 | } |
||
| 954 | |||
| 955 | return $this->_normalize($temp->modPow($e, $n)); |
||
| 956 | } |
||
| 957 | |||
| 958 | $temp = new static(); |
||
| 959 | $temp->value = gmp_powm($this->value, $e->value, $n->value); |
||
| 960 | |||
| 961 | return $this->_normalize($temp); |
||
| 962 | } |
||
| 963 | |||
| 964 | /** |
||
| 965 | * Performs modular exponentiation. |
||
| 966 | * |
||
| 967 | * Alias for modPow(). |
||
| 968 | * |
||
| 969 | * @param \Jose\Util\Integer $e |
||
| 970 | * @param \Jose\Util\Integer $n |
||
| 971 | * |
||
| 972 | * @return \Jose\Util\BigInteger |
||
| 973 | */ |
||
| 974 | public function powMod(BigInteger $e, BigInteger $n) |
||
| 975 | { |
||
| 976 | return $this->modPow($e, $n); |
||
| 977 | } |
||
| 978 | |||
| 979 | /** |
||
| 980 | * Barrett Modular Reduction. |
||
| 981 | * |
||
| 982 | * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} / |
||
| 983 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly, |
||
| 984 | * so as not to require negative numbers (initially, this script didn't support negative numbers). |
||
| 985 | * |
||
| 986 | * Employs "folding", as described at |
||
| 987 | * {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from |
||
| 988 | * it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x." |
||
| 989 | * |
||
| 990 | * Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that |
||
| 991 | * usable on account of (1) its not using reasonable radix points as discussed in |
||
| 992 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable |
||
| 993 | * radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that |
||
| 994 | * (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line |
||
| 995 | * comments for details. |
||
| 996 | * |
||
| 997 | * @param array $n |
||
| 998 | * @param array $m |
||
| 999 | * |
||
| 1000 | * @return array |
||
| 1001 | */ |
||
| 1002 | private static function _barrett($n, $m) |
||
| 1003 | { |
||
| 1004 | static $cache = [ |
||
| 1005 | self::VARIABLE => [], |
||
| 1006 | self::DATA => [], |
||
| 1007 | ]; |
||
| 1008 | |||
| 1009 | $m_length = count($m); |
||
| 1010 | |||
| 1011 | // if (self::_compare($n, self::_square($m)) >= 0) { |
||
| 1012 | if (count($n) > 2 * $m_length) { |
||
| 1013 | $lhs = new static(); |
||
| 1014 | $rhs = new static(); |
||
| 1015 | $lhs->value = $n; |
||
| 1016 | $rhs->value = $m; |
||
| 1017 | list(, $temp) = $lhs->divide($rhs); |
||
| 1018 | |||
| 1019 | return $temp->value; |
||
| 1020 | } |
||
| 1021 | |||
| 1022 | // if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced |
||
| 1023 | if ($m_length < 5) { |
||
| 1024 | return self::_regularBarrett($n, $m); |
||
| 1025 | } |
||
| 1026 | |||
| 1027 | // n = 2 * m.length |
||
| 1028 | |||
| 1029 | if (($key = array_search($m, $cache[self::VARIABLE])) === false) { |
||
| 1030 | $key = count($cache[self::VARIABLE]); |
||
| 1031 | $cache[self::VARIABLE][] = $m; |
||
| 1032 | |||
| 1033 | $lhs = new static(); |
||
| 1034 | $lhs_value = &$lhs->value; |
||
| 1035 | $lhs_value = self::_array_repeat(0, $m_length + ($m_length >> 1)); |
||
| 1036 | $lhs_value[] = 1; |
||
| 1037 | $rhs = new static(); |
||
| 1038 | $rhs->value = $m; |
||
| 1039 | |||
| 1040 | list($u, $m1) = $lhs->divide($rhs); |
||
| 1041 | $u = $u->value; |
||
| 1042 | $m1 = $m1->value; |
||
| 1043 | |||
| 1044 | $cache[self::DATA][] = [ |
||
| 1045 | 'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1) |
||
| 1046 | 'm1' => $m1, // m.length |
||
| 1047 | ]; |
||
| 1048 | } else { |
||
| 1049 | extract($cache[self::DATA][$key]); |
||
| 1050 | } |
||
| 1051 | |||
| 1052 | $cutoff = $m_length + ($m_length >> 1); |
||
| 1053 | $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1) |
||
| 1054 | $msd = array_slice($n, $cutoff); // m.length >> 1 |
||
| 1055 | $lsd = self::_trim($lsd); |
||
| 1056 | $temp = self::_multiply($msd, false, $m1, false); |
||
| 1057 | $n = self::_add($lsd, false, $temp[self::VALUE], false); // m.length + (m.length >> 1) + 1 |
||
| 1058 | |||
| 1059 | if ($m_length & 1) { |
||
| 1060 | return self::_regularBarrett($n[self::VALUE], $m); |
||
| 1061 | } |
||
| 1062 | |||
| 1063 | // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2 |
||
| 1064 | $temp = array_slice($n[self::VALUE], $m_length - 1); |
||
| 1065 | // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2 |
||
| 1066 | // if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1 |
||
| 1067 | $temp = self::_multiply($temp, false, $u, false); |
||
| 1068 | // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1 |
||
| 1069 | // if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) |
||
| 1070 | $temp = array_slice($temp[self::VALUE], ($m_length >> 1) + 1); |
||
| 1071 | // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1 |
||
| 1072 | // if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1) |
||
| 1073 | $temp = self::_multiply($temp, false, $m, false); |
||
| 1074 | |||
| 1075 | // at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit |
||
| 1076 | // number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop |
||
| 1077 | // following this comment would loop a lot (hence our calling _regularBarrett() in that situation). |
||
| 1078 | |||
| 1079 | $result = self::_subtract($n[self::VALUE], false, $temp[self::VALUE], false); |
||
| 1080 | |||
| 1081 | while (self::_compare($result[self::VALUE], $result[self::SIGN], $m, false) >= 0) { |
||
| 1082 | $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $m, false); |
||
| 1083 | } |
||
| 1084 | |||
| 1085 | return $result[self::VALUE]; |
||
| 1086 | } |
||
| 1087 | |||
| 1088 | /** |
||
| 1089 | * (Regular) Barrett Modular Reduction. |
||
| 1090 | * |
||
| 1091 | * For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this |
||
| 1092 | * is that this function does not fold the denominator into a smaller form. |
||
| 1093 | * |
||
| 1094 | * @param array $x |
||
| 1095 | * @param array $n |
||
| 1096 | * |
||
| 1097 | * @return array |
||
| 1098 | */ |
||
| 1099 | private static function _regularBarrett($x, $n) |
||
| 1100 | { |
||
| 1101 | static $cache = [ |
||
| 1102 | self::VARIABLE => [], |
||
| 1103 | self::DATA => [], |
||
| 1104 | ]; |
||
| 1105 | |||
| 1106 | $n_length = count($n); |
||
| 1107 | |||
| 1108 | if (count($x) > 2 * $n_length) { |
||
| 1109 | $lhs = new static(); |
||
| 1110 | $rhs = new static(); |
||
| 1111 | $lhs->value = $x; |
||
| 1112 | $rhs->value = $n; |
||
| 1113 | list(, $temp) = $lhs->divide($rhs); |
||
| 1114 | |||
| 1115 | return $temp->value; |
||
| 1116 | } |
||
| 1117 | |||
| 1118 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
| 1119 | $key = count($cache[self::VARIABLE]); |
||
| 1120 | $cache[self::VARIABLE][] = $n; |
||
| 1121 | $lhs = new static(); |
||
| 1122 | $lhs_value = &$lhs->value; |
||
| 1123 | $lhs_value = self::_array_repeat(0, 2 * $n_length); |
||
| 1124 | $lhs_value[] = 1; |
||
| 1125 | $rhs = new static(); |
||
| 1126 | $rhs->value = $n; |
||
| 1127 | list($temp) = $lhs->divide($rhs); // m.length |
||
| 1128 | $cache[self::DATA][] = $temp->value; |
||
| 1129 | } |
||
| 1130 | |||
| 1131 | // 2 * m.length - (m.length - 1) = m.length + 1 |
||
| 1132 | $temp = array_slice($x, $n_length - 1); |
||
| 1133 | // (m.length + 1) + m.length = 2 * m.length + 1 |
||
| 1134 | $temp = self::_multiply($temp, false, $cache[self::DATA][$key], false); |
||
| 1135 | // (2 * m.length + 1) - (m.length - 1) = m.length + 2 |
||
| 1136 | $temp = array_slice($temp[self::VALUE], $n_length + 1); |
||
| 1137 | |||
| 1138 | // m.length + 1 |
||
| 1139 | $result = array_slice($x, 0, $n_length + 1); |
||
| 1140 | // m.length + 1 |
||
| 1141 | $temp = self::_multiplyLower($temp, false, $n, false, $n_length + 1); |
||
| 1142 | // $temp == array_slice(self::_multiply($temp, false, $n, false)->value, 0, $n_length + 1) |
||
| 1143 | |||
| 1144 | if (self::_compare($result, false, $temp[self::VALUE], $temp[self::SIGN]) < 0) { |
||
| 1145 | $corrector_value = self::_array_repeat(0, $n_length + 1); |
||
| 1146 | $corrector_value[count($corrector_value)] = 1; |
||
| 1147 | $result = self::_add($result, false, $corrector_value, false); |
||
| 1148 | $result = $result[self::VALUE]; |
||
| 1149 | } |
||
| 1150 | |||
| 1151 | // at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits |
||
| 1152 | $result = self::_subtract($result, false, $temp[self::VALUE], $temp[self::SIGN]); |
||
| 1153 | while (self::_compare($result[self::VALUE], $result[self::SIGN], $n, false) > 0) { |
||
| 1154 | $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $n, false); |
||
| 1155 | } |
||
| 1156 | |||
| 1157 | return $result[self::VALUE]; |
||
| 1158 | } |
||
| 1159 | |||
| 1160 | /** |
||
| 1161 | * Performs long multiplication up to $stop digits. |
||
| 1162 | * |
||
| 1163 | * If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved. |
||
| 1164 | * |
||
| 1165 | * @param array $x_value |
||
| 1166 | * @param bool $x_negative |
||
| 1167 | * @param array $y_value |
||
| 1168 | * @param bool $y_negative |
||
| 1169 | * @param int $stop |
||
| 1170 | * |
||
| 1171 | * @return array |
||
| 1172 | */ |
||
| 1173 | private static function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop) |
||
| 1174 | { |
||
| 1175 | $x_length = count($x_value); |
||
| 1176 | $y_length = count($y_value); |
||
| 1177 | |||
| 1178 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
| 1179 | return [ |
||
| 1180 | self::VALUE => [], |
||
| 1181 | self::SIGN => false, |
||
| 1182 | ]; |
||
| 1183 | } |
||
| 1184 | |||
| 1185 | if ($x_length < $y_length) { |
||
| 1186 | $temp = $x_value; |
||
| 1187 | $x_value = $y_value; |
||
| 1188 | $y_value = $temp; |
||
| 1189 | |||
| 1190 | $x_length = count($x_value); |
||
| 1191 | $y_length = count($y_value); |
||
| 1192 | } |
||
| 1193 | |||
| 1194 | $product_value = self::_array_repeat(0, $x_length + $y_length); |
||
| 1195 | |||
| 1196 | // the following for loop could be removed if the for loop following it |
||
| 1197 | // (the one with nested for loops) initially set $i to 0, but |
||
| 1198 | // doing so would also make the result in one set of unnecessary adds, |
||
| 1199 | // since on the outermost loops first pass, $product->value[$k] is going |
||
| 1200 | // to always be 0 |
||
| 1201 | |||
| 1202 | $carry = 0; |
||
| 1203 | |||
| 1204 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i |
||
| 1205 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
| 1206 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1207 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
| 1208 | } |
||
| 1209 | |||
| 1210 | if ($j < $stop) { |
||
| 1211 | $product_value[$j] = $carry; |
||
| 1212 | } |
||
| 1213 | |||
| 1214 | // the above for loop is what the previous comment was talking about. the |
||
| 1215 | // following for loop is the "one with nested for loops" |
||
| 1216 | |||
| 1217 | for ($i = 1; $i < $y_length; ++$i) { |
||
| 1218 | $carry = 0; |
||
| 1219 | |||
| 1220 | for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) { |
||
| 1221 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
| 1222 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
| 1223 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
| 1224 | } |
||
| 1225 | |||
| 1226 | if ($k < $stop) { |
||
| 1227 | $product_value[$k] = $carry; |
||
| 1228 | } |
||
| 1229 | } |
||
| 1230 | |||
| 1231 | return [ |
||
| 1232 | self::VALUE => self::_trim($product_value), |
||
| 1233 | self::SIGN => $x_negative != $y_negative, |
||
| 1234 | ]; |
||
| 1235 | } |
||
| 1236 | |||
| 1237 | /** |
||
| 1238 | * Montgomery Modular Reduction. |
||
| 1239 | * |
||
| 1240 | * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. |
||
| 1241 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be |
||
| 1242 | * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function |
||
| 1243 | * to work correctly. |
||
| 1244 | * |
||
| 1245 | * @param array $x |
||
| 1246 | * @param array $n |
||
| 1247 | * |
||
| 1248 | * @return array |
||
| 1249 | */ |
||
| 1250 | private static function _montgomery($x, $n) |
||
| 1251 | { |
||
| 1252 | static $cache = [ |
||
| 1253 | self::VARIABLE => [], |
||
| 1254 | self::DATA => [], |
||
| 1255 | ]; |
||
| 1256 | |||
| 1257 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
| 1258 | $key = count($cache[self::VARIABLE]); |
||
| 1259 | $cache[self::VARIABLE][] = $x; |
||
| 1260 | $cache[self::DATA][] = self::_modInverse67108864($n); |
||
| 1261 | } |
||
| 1262 | |||
| 1263 | $k = count($n); |
||
| 1264 | |||
| 1265 | $result = [self::VALUE => $x]; |
||
| 1266 | |||
| 1267 | for ($i = 0; $i < $k; ++$i) { |
||
| 1268 | $temp = $result[self::VALUE][$i] * $cache[self::DATA][$key]; |
||
| 1269 | $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
||
| 1270 | $temp = self::_regularMultiply([$temp], $n); |
||
| 1271 | $temp = array_merge($this->_array_repeat(0, $i), $temp); |
||
| 1272 | $result = self::_add($result[self::VALUE], false, $temp, false); |
||
| 1273 | } |
||
| 1274 | |||
| 1275 | $result[self::VALUE] = array_slice($result[self::VALUE], $k); |
||
| 1276 | |||
| 1277 | if (self::_compare($result, false, $n, false) >= 0) { |
||
| 1278 | $result = self::_subtract($result[self::VALUE], false, $n, false); |
||
| 1279 | } |
||
| 1280 | |||
| 1281 | return $result[self::VALUE]; |
||
| 1282 | } |
||
| 1283 | |||
| 1284 | /** |
||
| 1285 | * Modular Inverse of a number mod 2**26 (eg. 67108864). |
||
| 1286 | * |
||
| 1287 | * Based off of the bnpInvDigit function implemented and justified in the following URL: |
||
| 1288 | * |
||
| 1289 | * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js} |
||
| 1290 | * |
||
| 1291 | * The following URL provides more info: |
||
| 1292 | * |
||
| 1293 | * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85} |
||
| 1294 | * |
||
| 1295 | * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For |
||
| 1296 | * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields |
||
| 1297 | * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't |
||
| 1298 | * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that |
||
| 1299 | * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the |
||
| 1300 | * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to |
||
| 1301 | * 40 bits, which only 64-bit floating points will support. |
||
| 1302 | * |
||
| 1303 | * Thanks to Pedro Gimeno Fortea for input! |
||
| 1304 | * |
||
| 1305 | * @param array $x |
||
| 1306 | * |
||
| 1307 | * @return int |
||
| 1308 | */ |
||
| 1309 | private function _modInverse67108864($x) // 2**26 == 67,108,864 |
||
| 1310 | { |
||
| 1311 | $x = -$x[0]; |
||
| 1312 | $result = $x & 0x3; // x**-1 mod 2**2 |
||
| 1313 | $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4 |
||
| 1314 | $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8 |
||
| 1315 | $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16 |
||
| 1316 | $result = fmod($result * (2 - fmod($x * $result, self::$baseFull)), self::$baseFull); // x**-1 mod 2**26 |
||
| 1317 | return $result & self::$maxDigit; |
||
| 1318 | } |
||
| 1319 | |||
| 1320 | /** |
||
| 1321 | * Calculates modular inverses. |
||
| 1322 | * |
||
| 1323 | * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
||
| 1324 | * |
||
| 1325 | * Here's an example: |
||
| 1326 | * <code> |
||
| 1327 | * <?php |
||
| 1328 | * $a = new \Jose\Util\teger(30); |
||
| 1329 | * $b = new \Jose\Util\teger(17); |
||
| 1330 | * |
||
| 1331 | * $c = $a->modInverse($b); |
||
| 1332 | * echo $c->toString(); // outputs 4 |
||
| 1333 | * |
||
| 1334 | * echo "\r\n"; |
||
| 1335 | * |
||
| 1336 | * $d = $a->multiply($c); |
||
| 1337 | * list(, $d) = $d->divide($b); |
||
| 1338 | * echo $d; // outputs 1 (as per the definition of modular inverse) |
||
| 1339 | * ?> |
||
| 1340 | * </code> |
||
| 1341 | * |
||
| 1342 | * @param \Jose\Util\Integer $n |
||
| 1343 | * |
||
| 1344 | * @return \Jose\Util\eger|false |
||
| 1345 | * |
||
| 1346 | */ |
||
| 1347 | public function modInverse(BigInteger $n) |
||
| 1348 | { |
||
| 1349 | $temp = new static(); |
||
| 1350 | $temp->value = gmp_invert($this->value, $n->value); |
||
| 1351 | |||
| 1352 | return ($temp->value === false) ? false : $this->_normalize($temp); |
||
| 1353 | } |
||
| 1354 | |||
| 1355 | /** |
||
| 1356 | * Calculates the greatest common divisor and Bezout's identity. |
||
| 1357 | * |
||
| 1358 | * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that |
||
| 1359 | * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which |
||
| 1360 | * combination is returned is dependant upon which mode is in use. See |
||
| 1361 | * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. |
||
| 1362 | * |
||
| 1363 | * Here's an example: |
||
| 1364 | * <code> |
||
| 1365 | * <?php |
||
| 1366 | * $a = new \Jose\Util\eger(693); |
||
| 1367 | * $b = new \Jose\Util\eger(609); |
||
| 1368 | * |
||
| 1369 | * extract($a->extendedGCD($b)); |
||
| 1370 | * |
||
| 1371 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
| 1372 | * echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21 |
||
| 1373 | * ?> |
||
| 1374 | * </code> |
||
| 1375 | * |
||
| 1376 | * @param \Jose\Util\Integer $n |
||
| 1377 | * |
||
| 1378 | * @return \Jose\Util\BigInteger |
||
| 1379 | * |
||
| 1380 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, |
||
| 1381 | * the more traditional algorithim requires "relatively costly multiple-precision divisions". |
||
| 1382 | */ |
||
| 1383 | public function extendedGCD(BigInteger $n) |
||
| 1384 | { |
||
| 1385 | extract(gmp_gcdext($this->value, $n->value)); |
||
| 1386 | |||
| 1387 | return [ |
||
| 1388 | 'gcd' => $this->_normalize(new static($g)), |
||
| 1389 | 'x' => $this->_normalize(new static($s)), |
||
| 1390 | 'y' => $this->_normalize(new static($t)), |
||
| 1391 | ]; |
||
| 1392 | } |
||
| 1393 | |||
| 1394 | /** |
||
| 1395 | * Calculates the greatest common divisor. |
||
| 1396 | * |
||
| 1397 | * Say you have 693 and 609. The GCD is 21. |
||
| 1398 | * |
||
| 1399 | * Here's an example: |
||
| 1400 | * <code> |
||
| 1401 | * <?php |
||
| 1402 | * $a = new \Jose\Util\eger(693); |
||
| 1403 | * $b = new \Jose\Util\eger(609); |
||
| 1404 | * |
||
| 1405 | * $gcd = a->extendedGCD($b); |
||
| 1406 | * |
||
| 1407 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
| 1408 | * ?> |
||
| 1409 | * </code> |
||
| 1410 | * |
||
| 1411 | * @param \Jose\Util\Integer $n |
||
| 1412 | * |
||
| 1413 | * @return \Jose\Util\BigInteger |
||
| 1414 | */ |
||
| 1415 | public function gcd(BigInteger $n) |
||
| 1416 | { |
||
| 1417 | extract($this->extendedGCD($n)); |
||
| 1418 | |||
| 1419 | return $gcd; |
||
| 1420 | } |
||
| 1421 | |||
| 1422 | /** |
||
| 1423 | * Absolute value. |
||
| 1424 | * |
||
| 1425 | * @return \Jose\Util\BigInteger |
||
| 1426 | */ |
||
| 1427 | public function abs() |
||
| 1428 | { |
||
| 1429 | $temp = new static(); |
||
| 1430 | |||
| 1431 | $temp->value = gmp_abs($this->value); |
||
| 1432 | |||
| 1433 | return $temp; |
||
| 1434 | } |
||
| 1435 | |||
| 1436 | /** |
||
| 1437 | * Compares two numbers. |
||
| 1438 | * |
||
| 1439 | * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
||
| 1440 | * demonstrated thusly: |
||
| 1441 | * |
||
| 1442 | * $x > $y: $x->compare($y) > 0 |
||
| 1443 | * $x < $y: $x->compare($y) < 0 |
||
| 1444 | * $x == $y: $x->compare($y) == 0 |
||
| 1445 | * |
||
| 1446 | * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
||
| 1447 | * |
||
| 1448 | * @param \Jose\Util\Integer $y |
||
| 1449 | * |
||
| 1450 | * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
||
| 1451 | * |
||
| 1452 | */ |
||
| 1453 | public function compare(BigInteger $y) |
||
| 1454 | { |
||
| 1455 | return gmp_cmp($this->value, $y->value); |
||
| 1456 | } |
||
| 1457 | |||
| 1458 | /** |
||
| 1459 | * Compares two numbers. |
||
| 1460 | * |
||
| 1461 | * @param array $x_value |
||
| 1462 | * @param bool $x_negative |
||
| 1463 | * @param array $y_value |
||
| 1464 | * @param bool $y_negative |
||
| 1465 | * |
||
| 1466 | * @return int |
||
| 1467 | */ |
||
| 1468 | private static function _compare($x_value, $x_negative, $y_value, $y_negative) |
||
| 1469 | { |
||
| 1470 | if ($x_negative != $y_negative) { |
||
| 1471 | return (!$x_negative && $y_negative) ? 1 : -1; |
||
| 1472 | } |
||
| 1473 | |||
| 1474 | $result = $x_negative ? -1 : 1; |
||
| 1475 | |||
| 1476 | if (count($x_value) != count($y_value)) { |
||
| 1477 | return (count($x_value) > count($y_value)) ? $result : -$result; |
||
| 1478 | } |
||
| 1479 | $size = max(count($x_value), count($y_value)); |
||
| 1480 | |||
| 1481 | $x_value = array_pad($x_value, $size, 0); |
||
| 1482 | $y_value = array_pad($y_value, $size, 0); |
||
| 1483 | |||
| 1484 | for ($i = count($x_value) - 1; $i >= 0; --$i) { |
||
| 1485 | if ($x_value[$i] != $y_value[$i]) { |
||
| 1486 | return ($x_value[$i] > $y_value[$i]) ? $result : -$result; |
||
| 1487 | } |
||
| 1488 | } |
||
| 1489 | |||
| 1490 | return 0; |
||
| 1491 | } |
||
| 1492 | |||
| 1493 | /** |
||
| 1494 | * Tests the equality of two numbers. |
||
| 1495 | * |
||
| 1496 | * If you need to see if one number is greater than or less than another number, use BigInteger::compare() |
||
| 1497 | * |
||
| 1498 | * @param \Jose\Util\Integer $x |
||
| 1499 | * |
||
| 1500 | * @return bool |
||
| 1501 | */ |
||
| 1502 | public function equals(BigInteger $x) |
||
| 1503 | { |
||
| 1504 | return gmp_cmp($this->value, $x->value) == 0; |
||
| 1505 | } |
||
| 1506 | |||
| 1507 | /** |
||
| 1508 | * Set Precision. |
||
| 1509 | * |
||
| 1510 | * Some bitwise operations give different results depending on the precision being used. Examples include left |
||
| 1511 | * shift, not, and rotates. |
||
| 1512 | * |
||
| 1513 | * @param int $bits |
||
| 1514 | */ |
||
| 1515 | public function setPrecision($bits) |
||
| 1516 | { |
||
| 1517 | if ($bits < 1) { |
||
| 1518 | $this->precision = -1; |
||
| 1519 | $this->bitmask = false; |
||
| 1520 | |||
| 1521 | return; |
||
| 1522 | } |
||
| 1523 | $this->precision = $bits; |
||
| 1524 | if (MATH_BIGINTEGER_MODE != self::MODE_BCMATH) { |
||
| 1525 | $this->bitmask = new static(chr((1 << ($bits & 0x7)) - 1).str_repeat(chr(0xFF), $bits >> 3), 256); |
||
| 1526 | } else { |
||
| 1527 | $this->bitmask = new static(bcpow('2', $bits, 0)); |
||
| 1528 | } |
||
| 1529 | |||
| 1530 | $temp = $this->_normalize($this); |
||
| 1531 | $this->value = $temp->value; |
||
| 1532 | } |
||
| 1533 | |||
| 1534 | /** |
||
| 1535 | * Get Precision. |
||
| 1536 | * |
||
| 1537 | * @return int |
||
| 1538 | */ |
||
| 1539 | public function getPrecision() |
||
| 1540 | { |
||
| 1541 | return $this->precision; |
||
| 1542 | } |
||
| 1543 | |||
| 1544 | /** |
||
| 1545 | * Logical And. |
||
| 1546 | * |
||
| 1547 | * @param \Jose\Util\Integer $x |
||
| 1548 | * |
||
| 1549 | * |
||
| 1550 | * @return \Jose\Util\BigInteger |
||
| 1551 | */ |
||
| 1552 | public function bitwise_and(BigInteger $x) |
||
| 1553 | { |
||
| 1554 | $temp = new static(); |
||
| 1555 | $temp->value = gmp_and($this->value, $x->value); |
||
| 1556 | |||
| 1557 | return $this->_normalize($temp); |
||
| 1558 | } |
||
| 1559 | |||
| 1560 | /** |
||
| 1561 | * Logical Or. |
||
| 1562 | * |
||
| 1563 | * @param \Jose\Util\Integer $x |
||
| 1564 | * |
||
| 1565 | * |
||
| 1566 | * @return \Jose\Util\BigInteger |
||
| 1567 | */ |
||
| 1568 | public function bitwise_or(BigInteger $x) |
||
| 1569 | { |
||
| 1570 | $temp = new static(); |
||
| 1571 | $temp->value = gmp_or($this->value, $x->value); |
||
| 1572 | |||
| 1573 | return $this->_normalize($temp); |
||
| 1574 | } |
||
| 1575 | |||
| 1576 | /** |
||
| 1577 | * Logical Exclusive-Or. |
||
| 1578 | * |
||
| 1579 | * @param \Jose\Util\Integer $x |
||
| 1580 | * |
||
| 1581 | * |
||
| 1582 | * @return \Jose\Util\BigInteger |
||
| 1583 | */ |
||
| 1584 | public function bitwise_xor(BigInteger $x) |
||
| 1585 | { |
||
| 1586 | $temp = new static(); |
||
| 1587 | $temp->value = gmp_xor($this->value, $x->value); |
||
| 1588 | |||
| 1589 | return $this->_normalize($temp); |
||
| 1590 | } |
||
| 1591 | |||
| 1592 | /** |
||
| 1593 | * Logical Not. |
||
| 1594 | * |
||
| 1595 | * |
||
| 1596 | * @return \Jose\Util\BigInteger |
||
| 1597 | */ |
||
| 1598 | public function bitwise_not() |
||
| 1599 | { |
||
| 1600 | // calculuate "not" without regard to $this->precision |
||
| 1601 | // (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0) |
||
| 1602 | $temp = $this->toBytes(); |
||
| 1603 | if ($temp == '') { |
||
| 1604 | return ''; |
||
| 1605 | } |
||
| 1606 | $pre_msb = decbin(ord($temp[0])); |
||
| 1607 | $temp = ~$temp; |
||
| 1608 | $msb = decbin(ord($temp[0])); |
||
| 1609 | if (strlen($msb) == 8) { |
||
| 1610 | $msb = substr($msb, strpos($msb, '0')); |
||
| 1611 | } |
||
| 1612 | $temp[0] = chr(bindec($msb)); |
||
| 1613 | |||
| 1614 | // see if we need to add extra leading 1's |
||
| 1615 | $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8; |
||
| 1616 | $new_bits = $this->precision - $current_bits; |
||
| 1617 | if ($new_bits <= 0) { |
||
| 1618 | return $this->_normalize(new static($temp, 256)); |
||
| 1619 | } |
||
| 1620 | |||
| 1621 | // generate as many leading 1's as we need to. |
||
| 1622 | $leading_ones = chr((1 << ($new_bits & 0x7)) - 1).str_repeat(chr(0xFF), $new_bits >> 3); |
||
| 1623 | |||
| 1624 | self::_base256_lshift($leading_ones, $current_bits); |
||
| 1625 | |||
| 1626 | $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT); |
||
| 1627 | |||
| 1628 | return $this->_normalize(new static($leading_ones | $temp, 256)); |
||
| 1629 | } |
||
| 1630 | |||
| 1631 | /** |
||
| 1632 | * Logical Right Shift. |
||
| 1633 | * |
||
| 1634 | * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. |
||
| 1635 | * |
||
| 1636 | * @param int $shift |
||
| 1637 | * |
||
| 1638 | * @return \Jose\Util\BigInteger |
||
| 1639 | * |
||
| 1640 | */ |
||
| 1641 | public function bitwise_rightShift($shift) |
||
| 1642 | { |
||
| 1643 | $temp = new static(); |
||
| 1644 | |||
| 1645 | static $two; |
||
| 1646 | |||
| 1647 | if (!isset($two)) { |
||
| 1648 | $two = gmp_init('2'); |
||
| 1649 | } |
||
| 1650 | |||
| 1651 | $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift)); |
||
| 1652 | |||
| 1653 | return $this->_normalize($temp); |
||
| 1654 | } |
||
| 1655 | |||
| 1656 | /** |
||
| 1657 | * Logical Left Shift. |
||
| 1658 | * |
||
| 1659 | * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
||
| 1660 | * |
||
| 1661 | * @param int $shift |
||
| 1662 | * |
||
| 1663 | * @return \Jose\Util\BigInteger |
||
| 1664 | * |
||
| 1665 | */ |
||
| 1666 | public function bitwise_leftShift($shift) |
||
| 1667 | { |
||
| 1668 | $temp = new static(); |
||
| 1669 | |||
| 1670 | static $two; |
||
| 1671 | |||
| 1672 | if (!isset($two)) { |
||
| 1673 | $two = gmp_init('2'); |
||
| 1674 | } |
||
| 1675 | |||
| 1676 | $temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
||
| 1677 | |||
| 1678 | return $this->_normalize($temp); |
||
| 1679 | } |
||
| 1680 | |||
| 1681 | /** |
||
| 1682 | * Logical Left Rotate. |
||
| 1683 | * |
||
| 1684 | * Instead of the top x bits being dropped they're appended to the shifted bit string. |
||
| 1685 | * |
||
| 1686 | * @param int $shift |
||
| 1687 | * |
||
| 1688 | * @return \Jose\Util\BigInteger |
||
| 1689 | */ |
||
| 1690 | public function bitwise_leftRotate($shift) |
||
| 1691 | { |
||
| 1692 | $bits = $this->toBytes(); |
||
| 1693 | |||
| 1694 | if ($this->precision > 0) { |
||
| 1695 | $precision = $this->precision; |
||
| 1696 | if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
||
| 1697 | $mask = $this->bitmask->subtract(new static(1)); |
||
| 1698 | $mask = $mask->toBytes(); |
||
| 1699 | } else { |
||
| 1700 | $mask = $this->bitmask->toBytes(); |
||
| 1701 | } |
||
| 1702 | } else { |
||
| 1703 | $temp = ord($bits[0]); |
||
| 1704 | for ($i = 0; $temp >> $i; ++$i) { |
||
| 1705 | } |
||
| 1706 | $precision = 8 * strlen($bits) - 8 + $i; |
||
| 1707 | $mask = chr((1 << ($precision & 0x7)) - 1).str_repeat(chr(0xFF), $precision >> 3); |
||
| 1708 | } |
||
| 1709 | |||
| 1710 | if ($shift < 0) { |
||
| 1711 | $shift += $precision; |
||
| 1712 | } |
||
| 1713 | $shift %= $precision; |
||
| 1714 | |||
| 1715 | if (!$shift) { |
||
| 1716 | return clone $this; |
||
| 1717 | } |
||
| 1718 | |||
| 1719 | $left = $this->bitwise_leftShift($shift); |
||
| 1720 | $left = $left->bitwise_and(new static($mask, 256)); |
||
| 1721 | $right = $this->bitwise_rightShift($precision - $shift); |
||
| 1722 | $result = MATH_BIGINTEGER_MODE != self::MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right); |
||
| 1723 | |||
| 1724 | return $this->_normalize($result); |
||
| 1725 | } |
||
| 1726 | |||
| 1727 | /** |
||
| 1728 | * Logical Right Rotate. |
||
| 1729 | * |
||
| 1730 | * Instead of the bottom x bits being dropped they're prepended to the shifted bit string. |
||
| 1731 | * |
||
| 1732 | * @param int $shift |
||
| 1733 | * |
||
| 1734 | * @return \Jose\Util\BigInteger |
||
| 1735 | */ |
||
| 1736 | public function bitwise_rightRotate($shift) |
||
| 1737 | { |
||
| 1738 | return $this->bitwise_leftRotate(-$shift); |
||
| 1739 | } |
||
| 1740 | |||
| 1741 | /** |
||
| 1742 | * Generates a random BigInteger. |
||
| 1743 | * |
||
| 1744 | * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
||
| 1745 | * |
||
| 1746 | * @param int $length |
||
| 1747 | * |
||
| 1748 | * @return \Jose\Util\BigInteger |
||
| 1749 | */ |
||
| 1750 | private static function _random_number_helper($size) |
||
| 1751 | { |
||
| 1752 | if (class_exists('\phpseclib\Crypt\Random')) { |
||
| 1753 | $random = random_bytes($size); |
||
| 1754 | } else { |
||
| 1755 | $random = ''; |
||
| 1756 | |||
| 1757 | if ($size & 1) { |
||
| 1758 | $random .= chr(mt_rand(0, 255)); |
||
| 1759 | } |
||
| 1760 | |||
| 1761 | $blocks = $size >> 1; |
||
| 1762 | for ($i = 0; $i < $blocks; ++$i) { |
||
| 1763 | // mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems |
||
| 1764 | $random .= pack('n', mt_rand(0, 0xFFFF)); |
||
| 1765 | } |
||
| 1766 | } |
||
| 1767 | |||
| 1768 | return new static($random, 256); |
||
| 1769 | } |
||
| 1770 | |||
| 1771 | /** |
||
| 1772 | * Generate a random number. |
||
| 1773 | * |
||
| 1774 | * Returns a random number between $min and $max where $min and $max |
||
| 1775 | * can be defined using one of the two methods: |
||
| 1776 | * |
||
| 1777 | * BigInteger::random($min, $max) |
||
| 1778 | * BigInteger::random($max, $min) |
||
| 1779 | * |
||
| 1780 | * @param \Jose\Util\eger $arg1 |
||
| 1781 | * @param \Jose\Util\eger $arg2 |
||
| 1782 | * |
||
| 1783 | * @return \Jose\Util\BigInteger |
||
| 1784 | */ |
||
| 1785 | public static function random(BigInteger $min, BigInteger $max) |
||
| 1786 | { |
||
| 1787 | $compare = $max->compare($min); |
||
| 1788 | |||
| 1789 | if (!$compare) { |
||
| 1790 | return $this->_normalize($min); |
||
| 1791 | } elseif ($compare < 0) { |
||
| 1792 | // if $min is bigger then $max, swap $min and $max |
||
| 1793 | $temp = $max; |
||
| 1794 | $max = $min; |
||
| 1795 | $min = $temp; |
||
| 1796 | } |
||
| 1797 | |||
| 1798 | static $one; |
||
| 1799 | if (!isset($one)) { |
||
| 1800 | $one = new static(1); |
||
| 1801 | } |
||
| 1802 | |||
| 1803 | $max = $max->subtract($min->subtract($one)); |
||
| 1804 | $size = strlen(ltrim($max->toBytes(), chr(0))); |
||
| 1805 | |||
| 1806 | /* |
||
| 1807 | doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
||
| 1808 | eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
||
| 1809 | would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
||
| 1810 | not all numbers would be equally likely. some would be more likely than others. |
||
| 1811 | |||
| 1812 | creating a whole new random number until you find one that is within the range doesn't work |
||
| 1813 | because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
||
| 1814 | would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
||
| 1815 | would be pretty high that $random would be greater than $max. |
||
| 1816 | |||
| 1817 | phpseclib works around this using the technique described here: |
||
| 1818 | |||
| 1819 | http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
||
| 1820 | */ |
||
| 1821 | $random_max = new static(chr(1).str_repeat("\0", $size), 256); |
||
| 1822 | $random = static::_random_number_helper($size); |
||
| 1823 | |||
| 1824 | list($max_multiple) = $random_max->divide($max); |
||
| 1825 | $max_multiple = $max_multiple->multiply($max); |
||
| 1826 | |||
| 1827 | while ($random->compare($max_multiple) >= 0) { |
||
| 1828 | $random = $random->subtract($max_multiple); |
||
| 1829 | $random_max = $random_max->subtract($max_multiple); |
||
| 1830 | $random = $random->bitwise_leftShift(8); |
||
| 1831 | $random = $random->add(self::_random_number_helper(1)); |
||
| 1832 | $random_max = $random_max->bitwise_leftShift(8); |
||
| 1833 | list($max_multiple) = $random_max->divide($max); |
||
| 1834 | $max_multiple = $max_multiple->multiply($max); |
||
| 1835 | } |
||
| 1836 | list(, $random) = $random->divide($max); |
||
| 1837 | |||
| 1838 | return $random->add($min); |
||
| 1839 | } |
||
| 1840 | |||
| 1841 | /** |
||
| 1842 | * Generate a random prime number. |
||
| 1843 | * |
||
| 1844 | * If there's not a prime within the given range, false will be returned. |
||
| 1845 | * If more than $timeout seconds have elapsed, give up and return false. |
||
| 1846 | * |
||
| 1847 | * @param \Jose\Util\teger $min |
||
| 1848 | * @param \Jose\Util\teger $max |
||
| 1849 | * @param int $timeout |
||
| 1850 | * |
||
| 1851 | * @return Math_BigInteger|false |
||
| 1852 | * |
||
| 1853 | */ |
||
| 1854 | public static function randomPrime(BigInteger $min, BigInteger $max, $timeout = false) |
||
| 1855 | { |
||
| 1856 | $compare = $max->compare($min); |
||
| 1857 | |||
| 1858 | if (!$compare) { |
||
| 1859 | return $min->isPrime() ? $min : false; |
||
|
0 ignored issues
–
show
|
|||
| 1860 | } elseif ($compare < 0) { |
||
| 1861 | // if $min is bigger then $max, swap $min and $max |
||
| 1862 | $temp = $max; |
||
| 1863 | $max = $min; |
||
| 1864 | $min = $temp; |
||
| 1865 | } |
||
| 1866 | |||
| 1867 | static $one, $two; |
||
| 1868 | if (!isset($one)) { |
||
| 1869 | $one = new static(1); |
||
| 1870 | $two = new static(2); |
||
| 1871 | } |
||
| 1872 | |||
| 1873 | $start = time(); |
||
| 1874 | |||
| 1875 | $x = self::random($min, $max); |
||
| 1876 | |||
| 1877 | // gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>. |
||
| 1878 | if (MATH_BIGINTEGER_MODE == self::MODE_GMP && extension_loaded('gmp')) { |
||
| 1879 | $p = new static(); |
||
| 1880 | $p->value = gmp_nextprime($x->value); |
||
| 1881 | |||
| 1882 | if ($p->compare($max) <= 0) { |
||
| 1883 | return $p; |
||
| 1884 | } |
||
| 1885 | |||
| 1886 | if (!$min->equals($x)) { |
||
| 1887 | $x = $x->subtract($one); |
||
| 1888 | } |
||
| 1889 | |||
| 1890 | return self::randomPrime($min, $x); |
||
| 1891 | } |
||
| 1892 | |||
| 1893 | if ($x->equals($two)) { |
||
| 1894 | return $x; |
||
| 1895 | } |
||
| 1896 | |||
| 1897 | $x->_make_odd(); |
||
| 1898 | if ($x->compare($max) > 0) { |
||
| 1899 | // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range |
||
| 1900 | if ($min->equals($max)) { |
||
| 1901 | return false; |
||
| 1902 | } |
||
| 1903 | $x = clone $min; |
||
| 1904 | $x->_make_odd(); |
||
| 1905 | } |
||
| 1906 | |||
| 1907 | $initial_x = clone $x; |
||
| 1908 | |||
| 1909 | while (true) { |
||
| 1910 | if ($timeout !== false && time() - $start > $timeout) { |
||
| 1911 | return false; |
||
| 1912 | } |
||
| 1913 | |||
| 1914 | if ($x->isPrime()) { |
||
|
0 ignored issues
–
show
The method
isPrime() does not seem to exist on object<Jose\Util\BigInteger>.
This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces. This is most likely a typographical error or the method has been renamed. Loading history...
|
|||
| 1915 | return $x; |
||
| 1916 | } |
||
| 1917 | |||
| 1918 | $x = $x->add($two); |
||
| 1919 | |||
| 1920 | if ($x->compare($max) > 0) { |
||
| 1921 | $x = clone $min; |
||
| 1922 | if ($x->equals($two)) { |
||
| 1923 | return $x; |
||
| 1924 | } |
||
| 1925 | $x->_make_odd(); |
||
| 1926 | } |
||
| 1927 | |||
| 1928 | if ($x->equals($initial_x)) { |
||
| 1929 | return false; |
||
| 1930 | } |
||
| 1931 | } |
||
| 1932 | } |
||
| 1933 | |||
| 1934 | /** |
||
| 1935 | * Make the current number odd. |
||
| 1936 | * |
||
| 1937 | * If the current number is odd it'll be unchanged. If it's even, one will be added to it. |
||
| 1938 | */ |
||
| 1939 | private function _make_odd() |
||
| 1940 | { |
||
| 1941 | switch (MATH_BIGINTEGER_MODE) { |
||
| 1942 | case self::MODE_GMP: |
||
| 1943 | gmp_setbit($this->value, 0); |
||
| 1944 | break; |
||
| 1945 | case self::MODE_BCMATH: |
||
| 1946 | if ($this->value[strlen($this->value) - 1] % 2 == 0) { |
||
| 1947 | $this->value = bcadd($this->value, '1'); |
||
| 1948 | } |
||
| 1949 | break; |
||
| 1950 | default: |
||
| 1951 | $this->value[0] |= 1; |
||
| 1952 | } |
||
| 1953 | } |
||
| 1954 | |||
| 1955 | /** |
||
| 1956 | * Normalize. |
||
| 1957 | * |
||
| 1958 | * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
||
| 1959 | * |
||
| 1960 | * @param \Jose\Util\BigInteger |
||
| 1961 | * |
||
| 1962 | * @return \Jose\Util\BigInteger |
||
| 1963 | */ |
||
| 1964 | private function _normalize($result) |
||
| 1965 | { |
||
| 1966 | $result->precision = $this->precision; |
||
| 1967 | $result->bitmask = $this->bitmask; |
||
| 1968 | |||
| 1969 | if ($this->bitmask !== false) { |
||
| 1970 | $result->value = gmp_and($result->value, $result->bitmask->value); |
||
| 1971 | } |
||
| 1972 | |||
| 1973 | return $result; |
||
| 1974 | } |
||
| 1975 | |||
| 1976 | /** |
||
| 1977 | * Trim. |
||
| 1978 | * |
||
| 1979 | * Removes leading zeros |
||
| 1980 | * |
||
| 1981 | * @param array $value |
||
| 1982 | * |
||
| 1983 | * @return \Jose\Util\BigInteger |
||
| 1984 | */ |
||
| 1985 | private static function _trim($value) |
||
| 1986 | { |
||
| 1987 | for ($i = count($value) - 1; $i >= 0; --$i) { |
||
| 1988 | if ($value[$i]) { |
||
| 1989 | break; |
||
| 1990 | } |
||
| 1991 | unset($value[$i]); |
||
| 1992 | } |
||
| 1993 | |||
| 1994 | return $value; |
||
| 1995 | } |
||
| 1996 | |||
| 1997 | /** |
||
| 1998 | * Array Repeat. |
||
| 1999 | * |
||
| 2000 | * @param $input Array |
||
| 2001 | * @param $multiplier mixed |
||
| 2002 | * |
||
| 2003 | * @return array |
||
| 2004 | */ |
||
| 2005 | private static function _array_repeat($input, $multiplier) |
||
| 2006 | { |
||
| 2007 | return ($multiplier) ? array_fill(0, $multiplier, $input) : []; |
||
| 2008 | } |
||
| 2009 | |||
| 2010 | /** |
||
| 2011 | * Logical Left Shift. |
||
| 2012 | * |
||
| 2013 | * Shifts binary strings $shift bits, essentially multiplying by 2**$shift. |
||
| 2014 | * |
||
| 2015 | * @param $x String |
||
| 2016 | * @param $shift Integer |
||
| 2017 | * |
||
| 2018 | * @return string |
||
| 2019 | */ |
||
| 2020 | private static function _base256_lshift(&$x, $shift) |
||
| 2021 | { |
||
| 2022 | if ($shift == 0) { |
||
| 2023 | return; |
||
| 2024 | } |
||
| 2025 | |||
| 2026 | $num_bytes = $shift >> 3; // eg. floor($shift/8) |
||
| 2027 | $shift &= 7; // eg. $shift % 8 |
||
| 2028 | |||
| 2029 | $carry = 0; |
||
| 2030 | for ($i = strlen($x) - 1; $i >= 0; --$i) { |
||
| 2031 | $temp = ord($x[$i]) << $shift | $carry; |
||
| 2032 | $x[$i] = chr($temp); |
||
| 2033 | $carry = $temp >> 8; |
||
| 2034 | } |
||
| 2035 | $carry = ($carry != 0) ? chr($carry) : ''; |
||
| 2036 | $x = $carry.$x.str_repeat(chr(0), $num_bytes); |
||
| 2037 | } |
||
| 2038 | |||
| 2039 | /** |
||
| 2040 | * Single digit division. |
||
| 2041 | * |
||
| 2042 | * Even if int64 is being used the division operator will return a float64 value |
||
| 2043 | * if the dividend is not evenly divisible by the divisor. Since a float64 doesn't |
||
| 2044 | * have the precision of int64 this is a problem so, when int64 is being used, |
||
| 2045 | * we'll guarantee that the dividend is divisible by first subtracting the remainder. |
||
| 2046 | * |
||
| 2047 | * @param int $x |
||
| 2048 | * @param int $y |
||
| 2049 | * |
||
| 2050 | * @return int |
||
| 2051 | */ |
||
| 2052 | private static function _safe_divide($x, $y) |
||
| 2053 | { |
||
| 2054 | if (self::$base === 26) { |
||
| 2055 | return (int) ($x / $y); |
||
| 2056 | } |
||
| 2057 | |||
| 2058 | // self::$base === 31 |
||
| 2059 | return ($x - ($x % $y)) / $y; |
||
| 2060 | } |
||
| 2061 | } |
||
| 2062 |
This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.
This is most likely a typographical error or the method has been renamed.