These results are based on our legacy PHP analysis, consider migrating to our new PHP analysis engine instead. Learn more
1 | <?php |
||
2 | |||
3 | /* |
||
4 | * The MIT License (MIT) |
||
5 | * |
||
6 | * Copyright (c) 2014-2016 Spomky-Labs |
||
7 | * |
||
8 | * This software may be modified and distributed under the terms |
||
9 | * of the MIT license. See the LICENSE file for details. |
||
10 | */ |
||
11 | |||
12 | namespace Jose\Util; |
||
13 | |||
14 | class BigInteger |
||
15 | { |
||
16 | const MONTGOMERY = 0; |
||
17 | |||
18 | const BARRETT = 1; |
||
19 | |||
20 | const POWEROF2 = 2; |
||
21 | |||
22 | const CLASSIC = 3; |
||
23 | |||
24 | const NONE = 4; |
||
25 | |||
26 | /**#@+ |
||
27 | * Array constants |
||
28 | * |
||
29 | * Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and |
||
30 | * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them. |
||
31 | * |
||
32 | */ |
||
33 | /** |
||
34 | * $result[self::VALUE] contains the value. |
||
35 | */ |
||
36 | const VALUE = 0; |
||
37 | /** |
||
38 | * $result[self::SIGN] contains the sign. |
||
39 | */ |
||
40 | const SIGN = 1; |
||
41 | /**#@-*/ |
||
42 | |||
43 | /**#@+ |
||
44 | */ |
||
45 | /** |
||
46 | * Cache constants. |
||
47 | * |
||
48 | * $cache[self::VARIABLE] tells us whether or not the cached data is still valid. |
||
49 | */ |
||
50 | const VARIABLE = 0; |
||
51 | /** |
||
52 | * $cache[self::DATA] contains the cached data. |
||
53 | */ |
||
54 | const DATA = 1; |
||
55 | /**#@-*/ |
||
56 | |||
57 | /** |
||
58 | * Karatsuba Cutoff. |
||
59 | * |
||
60 | * At what point do we switch between Karatsuba multiplication and schoolbook long multiplication? |
||
61 | */ |
||
62 | const KARATSUBA_CUTOFF = 25; |
||
63 | |||
64 | /**#@+ |
||
65 | * Static properties used by the pure-PHP implementation. |
||
66 | * |
||
67 | * @see __construct() |
||
68 | */ |
||
69 | protected static $base; |
||
70 | protected static $baseFull; |
||
71 | protected static $maxDigit; |
||
72 | protected static $msb; |
||
73 | |||
74 | /** |
||
75 | * $max10 in greatest $max10Len satisfying |
||
76 | * $max10 = 10**$max10Len <= 2**$base. |
||
77 | */ |
||
78 | protected static $max10; |
||
79 | |||
80 | /** |
||
81 | * $max10Len in greatest $max10Len satisfying |
||
82 | * $max10 = 10**$max10Len <= 2**$base. |
||
83 | */ |
||
84 | protected static $max10Len; |
||
85 | protected static $maxDigit2; |
||
86 | /**#@-*/ |
||
87 | |||
88 | /** |
||
89 | * Holds the BigInteger's value. |
||
90 | * |
||
91 | * @var array |
||
92 | */ |
||
93 | private $value; |
||
94 | |||
95 | /** |
||
96 | * Holds the BigInteger's magnitude. |
||
97 | * |
||
98 | * @var bool |
||
99 | */ |
||
100 | private $is_negative = false; |
||
101 | |||
102 | /** |
||
103 | * Precision. |
||
104 | */ |
||
105 | private $precision = -1; |
||
106 | |||
107 | /** |
||
108 | * Precision Bitmask. |
||
109 | */ |
||
110 | private $bitmask = false; |
||
111 | |||
112 | /** |
||
113 | * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
||
114 | * |
||
115 | * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
||
116 | * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
||
117 | * |
||
118 | * Here's an example: |
||
119 | * <code> |
||
120 | * <?php |
||
121 | * $a = new \Jose\Util\in base-16 |
||
122 | * |
||
123 | * echo $a->toString(); // outputs 50 |
||
124 | * ?> |
||
125 | * </code> |
||
126 | * |
||
127 | * @param $x base-10 number or base-$base number if $base set. |
||
128 | * @param int $base |
||
129 | * |
||
130 | * @return \Jose\Util\BigInteger |
||
131 | */ |
||
132 | public function __construct($x = 0, $base = 10) |
||
133 | { |
||
134 | if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
||
135 | define('MATH_BIGINTEGER_OPENSSL_ENABLED', true); |
||
136 | } |
||
137 | |||
138 | switch (true) { |
||
139 | case is_resource($x) && get_resource_type($x) == 'GMP integer': |
||
140 | // PHP 5.6 switched GMP from using resources to objects |
||
141 | case $x instanceof \GMP: |
||
142 | $this->value = $x; |
||
143 | |||
144 | return; |
||
145 | } |
||
146 | $this->value = gmp_init(0); |
||
147 | |||
148 | // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
||
149 | // '0' is the only value like this per http://php.net/empty |
||
150 | if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
||
151 | return; |
||
152 | } |
||
153 | |||
154 | switch ($base) { |
||
155 | case -256: |
||
156 | if (ord($x[0]) & 0x80) { |
||
157 | $x = ~$x; |
||
158 | $this->is_negative = true; |
||
159 | } |
||
160 | case 256: |
||
161 | $sign = $this->is_negative ? '-' : ''; |
||
162 | $this->value = gmp_init($sign.'0x'.bin2hex($x)); |
||
163 | |||
164 | if ($this->is_negative) { |
||
165 | $this->is_negative = false; |
||
166 | $temp = $this->add(new static('-1')); |
||
167 | $this->value = $temp->value; |
||
168 | } |
||
169 | break; |
||
170 | case 16: |
||
171 | case -16: |
||
172 | if ($base > 0 && $x[0] == '-') { |
||
173 | $this->is_negative = true; |
||
174 | $x = substr($x, 1); |
||
175 | } |
||
176 | |||
177 | $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); |
||
178 | |||
179 | $is_negative = false; |
||
180 | if ($base < 0 && hexdec($x[0]) >= 8) { |
||
181 | $this->is_negative = $is_negative = true; |
||
182 | $x = bin2hex(~hex2bin($x)); |
||
183 | } |
||
184 | |||
185 | $temp = $this->is_negative ? '-0x'.$x : '0x'.$x; |
||
186 | $this->value = gmp_init($temp); |
||
187 | $this->is_negative = false; |
||
188 | |||
189 | if ($is_negative) { |
||
190 | $temp = $this->add(new static('-1')); |
||
191 | $this->value = $temp->value; |
||
192 | } |
||
193 | break; |
||
194 | case 10: |
||
195 | case -10: |
||
196 | // (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
||
197 | // (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
||
198 | // [^-0-9].*: find any non-numeric characters and then any characters that follow that |
||
199 | $x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
||
200 | |||
201 | $this->value = gmp_init($x); |
||
202 | break; |
||
203 | case 2: // base-2 support originally implemented by Lluis Pamies - thanks! |
||
204 | case -2: |
||
205 | if ($base > 0 && $x[0] == '-') { |
||
206 | $this->is_negative = true; |
||
207 | $x = substr($x, 1); |
||
208 | } |
||
209 | |||
210 | $x = preg_replace('#^([01]*).*#', '$1', $x); |
||
211 | $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT); |
||
212 | |||
213 | $str = '0x'; |
||
214 | while (strlen($x)) { |
||
215 | $part = substr($x, 0, 4); |
||
216 | $str .= dechex(bindec($part)); |
||
217 | $x = substr($x, 4); |
||
218 | } |
||
219 | |||
220 | if ($this->is_negative) { |
||
221 | $str = '-'.$str; |
||
222 | } |
||
223 | |||
224 | $temp = new static($str, 8 * $base); // ie. either -16 or +16 |
||
225 | $this->value = $temp->value; |
||
226 | $this->is_negative = $temp->is_negative; |
||
227 | |||
228 | break; |
||
229 | default: |
||
230 | // base not supported, so we'll let $this == 0 |
||
231 | } |
||
232 | } |
||
233 | |||
234 | /** |
||
235 | * Converts a BigInteger to a byte string (eg. base-256). |
||
236 | * |
||
237 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
238 | * saved as two's compliment. |
||
239 | * |
||
240 | * Here's an example: |
||
241 | * <code> |
||
242 | * <?php |
||
243 | * $a = new \Jose\Util\ger('65'); |
||
244 | * |
||
245 | * echo $a->toBytes(); // outputs chr(65) |
||
246 | * ?> |
||
247 | * </code> |
||
248 | * |
||
249 | * @param bool $twos_compliment |
||
250 | * |
||
251 | * @return string |
||
252 | * |
||
253 | */ |
||
254 | public function toBytes($twos_compliment = false) |
||
255 | { |
||
256 | if ($twos_compliment) { |
||
257 | $comparison = $this->compare(new static()); |
||
258 | if ($comparison == 0) { |
||
259 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
260 | } |
||
261 | |||
262 | $temp = $comparison < 0 ? $this->add(new static(1)) : $this; |
||
263 | $bytes = $temp->toBytes(); |
||
264 | |||
265 | if (empty($bytes)) { // eg. if the number we're trying to convert is -1 |
||
266 | $bytes = chr(0); |
||
267 | } |
||
268 | |||
269 | if (ord($bytes[0]) & 0x80) { |
||
270 | $bytes = chr(0).$bytes; |
||
271 | } |
||
272 | |||
273 | return $comparison < 0 ? ~$bytes : $bytes; |
||
274 | } |
||
275 | |||
276 | if (gmp_cmp($this->value, gmp_init(0)) == 0) { |
||
277 | return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
||
278 | } |
||
279 | |||
280 | $temp = gmp_strval(gmp_abs($this->value), 16); |
||
281 | $temp = (strlen($temp) & 1) ? '0'.$temp : $temp; |
||
282 | $temp = hex2bin($temp); |
||
283 | |||
284 | return $this->precision > 0 ? |
||
285 | substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : |
||
286 | ltrim($temp, chr(0)); |
||
287 | } |
||
288 | |||
289 | /** |
||
290 | * Converts a BigInteger to a hex string (eg. base-16)). |
||
291 | * |
||
292 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
293 | * saved as two's compliment. |
||
294 | * |
||
295 | * Here's an example: |
||
296 | * <code> |
||
297 | * <?php |
||
298 | * $a = new \Jose\Util\ger('65'); |
||
299 | * |
||
300 | * echo $a->toHex(); // outputs '41' |
||
301 | * ?> |
||
302 | * </code> |
||
303 | * |
||
304 | * @param bool $twos_compliment |
||
305 | * |
||
306 | * @return string |
||
307 | * |
||
308 | */ |
||
309 | public function toHex($twos_compliment = false) |
||
310 | { |
||
311 | return bin2hex($this->toBytes($twos_compliment)); |
||
312 | } |
||
313 | |||
314 | /** |
||
315 | * Converts a BigInteger to a bit string (eg. base-2). |
||
316 | * |
||
317 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
318 | * saved as two's compliment. |
||
319 | * |
||
320 | * Here's an example: |
||
321 | * <code> |
||
322 | * <?php |
||
323 | * $a = new \Jose\Util\ger('65'); |
||
324 | * |
||
325 | * echo $a->toBits(); // outputs '1000001' |
||
326 | * ?> |
||
327 | * </code> |
||
328 | * |
||
329 | * @param bool $twos_compliment |
||
330 | * |
||
331 | * @return string |
||
332 | * |
||
333 | */ |
||
334 | public function toBits($twos_compliment = false) |
||
335 | { |
||
336 | $hex = $this->toHex($twos_compliment); |
||
337 | $bits = ''; |
||
338 | for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i -= 8) { |
||
339 | $bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT).$bits; |
||
340 | } |
||
341 | if ($start) { // hexdec('') == 0 |
||
342 | $bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT).$bits; |
||
343 | } |
||
344 | $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0'); |
||
345 | |||
346 | if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) { |
||
347 | return '0'.$result; |
||
348 | } |
||
349 | |||
350 | return $result; |
||
351 | } |
||
352 | |||
353 | /** |
||
354 | * Adds two BigIntegers. |
||
355 | * |
||
356 | * Here's an example: |
||
357 | * <code> |
||
358 | * <?php |
||
359 | * $a = new \Jose\Util\ger('10'); |
||
360 | * $b = new \Jose\Util\ger('20'); |
||
361 | * |
||
362 | * $c = $a->add($b); |
||
363 | * |
||
364 | * echo $c->toString(); // outputs 30 |
||
365 | * ?> |
||
366 | * </code> |
||
367 | * |
||
368 | * @param \Jose\Util\Integer $y |
||
369 | * |
||
370 | * @return \Jose\Util\BigInteger |
||
371 | * |
||
372 | */ |
||
373 | public function add(BigInteger $y) |
||
374 | { |
||
375 | $temp = new static(); |
||
376 | $temp->value = gmp_add($this->value, $y->value); |
||
377 | |||
378 | return $this->_normalize($temp); |
||
379 | } |
||
380 | |||
381 | /** |
||
382 | * Performs addition. |
||
383 | * |
||
384 | * @param array $x_value |
||
385 | * @param bool $x_negative |
||
386 | * @param array $y_value |
||
387 | * @param bool $y_negative |
||
388 | * |
||
389 | * @return array |
||
390 | */ |
||
391 | private static function _add($x_value, $x_negative, $y_value, $y_negative) |
||
392 | { |
||
393 | $x_size = count($x_value); |
||
394 | $y_size = count($y_value); |
||
395 | |||
396 | if ($x_size == 0) { |
||
397 | return [ |
||
398 | self::VALUE => $y_value, |
||
399 | self::SIGN => $y_negative, |
||
400 | ]; |
||
401 | } elseif ($y_size == 0) { |
||
402 | return [ |
||
403 | self::VALUE => $x_value, |
||
404 | self::SIGN => $x_negative, |
||
405 | ]; |
||
406 | } |
||
407 | |||
408 | // subtract, if appropriate |
||
409 | if ($x_negative != $y_negative) { |
||
410 | if ($x_value == $y_value) { |
||
411 | return [ |
||
412 | self::VALUE => [], |
||
413 | self::SIGN => false, |
||
414 | ]; |
||
415 | } |
||
416 | |||
417 | $temp = self::_subtract($x_value, false, $y_value, false); |
||
418 | $temp[self::SIGN] = self::_compare($x_value, false, $y_value, false) > 0 ? |
||
419 | $x_negative : $y_negative; |
||
420 | |||
421 | return $temp; |
||
422 | } |
||
423 | |||
424 | if ($x_size < $y_size) { |
||
425 | $size = $x_size; |
||
426 | $value = $y_value; |
||
427 | } else { |
||
428 | $size = $y_size; |
||
429 | $value = $x_value; |
||
430 | } |
||
431 | |||
432 | $value[count($value)] = 0; // just in case the carry adds an extra digit |
||
433 | |||
434 | $carry = 0; |
||
435 | for ($i = 0, $j = 1; $j < $size; $i += 2, $j += 2) { |
||
436 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] + $y_value[$j] * self::$baseFull + $y_value[$i] + $carry; |
||
437 | $carry = $sum >= self::$maxDigit2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
438 | $sum = $carry ? $sum - self::$maxDigit2 : $sum; |
||
439 | |||
440 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
441 | |||
442 | $value[$i] = (int) ($sum - self::$baseFull * $temp); // eg. a faster alternative to fmod($sum, 0x4000000) |
||
443 | $value[$j] = $temp; |
||
444 | } |
||
445 | |||
446 | if ($j == $size) { // ie. if $y_size is odd |
||
447 | $sum = $x_value[$i] + $y_value[$i] + $carry; |
||
448 | $carry = $sum >= self::$baseFull; |
||
449 | $value[$i] = $carry ? $sum - self::$baseFull : $sum; |
||
450 | ++$i; // ie. let $i = $j since we've just done $value[$i] |
||
451 | } |
||
452 | |||
453 | if ($carry) { |
||
454 | for (; $value[$i] == self::$maxDigit; ++$i) { |
||
455 | $value[$i] = 0; |
||
456 | } |
||
457 | ++$value[$i]; |
||
458 | } |
||
459 | |||
460 | return [ |
||
461 | self::VALUE => self::_trim($value), |
||
462 | self::SIGN => $x_negative, |
||
463 | ]; |
||
464 | } |
||
465 | |||
466 | /** |
||
467 | * Subtracts two BigIntegers. |
||
468 | * |
||
469 | * Here's an example: |
||
470 | * <code> |
||
471 | * <?php |
||
472 | * $a = new \Jose\Util\ger('10'); |
||
473 | * $b = new \Jose\Util\ger('20'); |
||
474 | * |
||
475 | * $c = $a->subtract($b); |
||
476 | * |
||
477 | * echo $c->toString(); // outputs -10 |
||
478 | * ?> |
||
479 | * </code> |
||
480 | * |
||
481 | * @param \Jose\Util\Integer $y |
||
482 | * |
||
483 | * @return \Jose\Util\BigInteger |
||
484 | * |
||
485 | */ |
||
486 | public function subtract(BigInteger $y) |
||
487 | { |
||
488 | $temp = new static(); |
||
489 | $temp->value = gmp_sub($this->value, $y->value); |
||
490 | |||
491 | return $this->_normalize($temp); |
||
492 | } |
||
493 | |||
494 | /** |
||
495 | * Performs subtraction. |
||
496 | * |
||
497 | * @param array $x_value |
||
498 | * @param bool $x_negative |
||
499 | * @param array $y_value |
||
500 | * @param bool $y_negative |
||
501 | * |
||
502 | * @return array |
||
503 | */ |
||
504 | private static function _subtract($x_value, $x_negative, $y_value, $y_negative) |
||
505 | { |
||
506 | $x_size = count($x_value); |
||
507 | $y_size = count($y_value); |
||
508 | |||
509 | if ($x_size == 0) { |
||
510 | return [ |
||
511 | self::VALUE => $y_value, |
||
512 | self::SIGN => !$y_negative, |
||
513 | ]; |
||
514 | } elseif ($y_size == 0) { |
||
515 | return [ |
||
516 | self::VALUE => $x_value, |
||
517 | self::SIGN => $x_negative, |
||
518 | ]; |
||
519 | } |
||
520 | |||
521 | // add, if appropriate (ie. -$x - +$y or +$x - -$y) |
||
522 | if ($x_negative != $y_negative) { |
||
523 | $temp = self::_add($x_value, false, $y_value, false); |
||
524 | $temp[self::SIGN] = $x_negative; |
||
525 | |||
526 | return $temp; |
||
527 | } |
||
528 | |||
529 | $diff = self::_compare($x_value, $x_negative, $y_value, $y_negative); |
||
530 | |||
531 | if (!$diff) { |
||
532 | return [ |
||
533 | self::VALUE => [], |
||
534 | self::SIGN => false, |
||
535 | ]; |
||
536 | } |
||
537 | |||
538 | // switch $x and $y around, if appropriate. |
||
539 | if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) { |
||
540 | $temp = $x_value; |
||
541 | $x_value = $y_value; |
||
542 | $y_value = $temp; |
||
543 | |||
544 | $x_negative = !$x_negative; |
||
545 | |||
546 | $x_size = count($x_value); |
||
547 | $y_size = count($y_value); |
||
548 | } |
||
549 | |||
550 | // at this point, $x_value should be at least as big as - if not bigger than - $y_value |
||
551 | |||
552 | $carry = 0; |
||
553 | for ($i = 0, $j = 1; $j < $y_size; $i += 2, $j += 2) { |
||
554 | $sum = $x_value[$j] * self::$baseFull + $x_value[$i] - $y_value[$j] * self::$baseFull - $y_value[$i] - $carry; |
||
555 | $carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
||
556 | $sum = $carry ? $sum + self::$maxDigit2 : $sum; |
||
557 | |||
558 | $temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
||
559 | |||
560 | $x_value[$i] = (int) ($sum - self::$baseFull * $temp); |
||
561 | $x_value[$j] = $temp; |
||
562 | } |
||
563 | |||
564 | if ($j == $y_size) { // ie. if $y_size is odd |
||
565 | $sum = $x_value[$i] - $y_value[$i] - $carry; |
||
566 | $carry = $sum < 0; |
||
567 | $x_value[$i] = $carry ? $sum + self::$baseFull : $sum; |
||
568 | ++$i; |
||
569 | } |
||
570 | |||
571 | if ($carry) { |
||
572 | for (; !$x_value[$i]; ++$i) { |
||
573 | $x_value[$i] = self::$maxDigit; |
||
574 | } |
||
575 | --$x_value[$i]; |
||
576 | } |
||
577 | |||
578 | return [ |
||
579 | self::VALUE => self::_trim($x_value), |
||
580 | self::SIGN => $x_negative, |
||
581 | ]; |
||
582 | } |
||
583 | |||
584 | /** |
||
585 | * Multiplies two BigIntegers. |
||
586 | * |
||
587 | * Here's an example: |
||
588 | * <code> |
||
589 | * <?php |
||
590 | * $a = new \Jose\Util\ger('10'); |
||
591 | * $b = new \Jose\Util\ger('20'); |
||
592 | * |
||
593 | * $c = $a->multiply($b); |
||
594 | * |
||
595 | * echo $c->toString(); // outputs 200 |
||
596 | * ?> |
||
597 | * </code> |
||
598 | * |
||
599 | * @param \Jose\Util\Integer $x |
||
600 | * |
||
601 | * @return \Jose\Util\BigInteger |
||
602 | */ |
||
603 | public function multiply(BigInteger $x) |
||
604 | { |
||
605 | $temp = new static(); |
||
606 | $temp->value = gmp_mul($this->value, $x->value); |
||
607 | |||
608 | return $this->_normalize($temp); |
||
609 | } |
||
610 | |||
611 | /** |
||
612 | * Performs multiplication. |
||
613 | * |
||
614 | * @param array $x_value |
||
615 | * @param bool $x_negative |
||
616 | * @param array $y_value |
||
617 | * @param bool $y_negative |
||
618 | * |
||
619 | * @return array |
||
620 | */ |
||
621 | private static function _multiply($x_value, $x_negative, $y_value, $y_negative) |
||
622 | { |
||
623 | $x_length = count($x_value); |
||
624 | $y_length = count($y_value); |
||
625 | |||
626 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
627 | return [ |
||
628 | self::VALUE => [], |
||
629 | self::SIGN => false, |
||
630 | ]; |
||
631 | } |
||
632 | |||
633 | return [ |
||
634 | self::VALUE => min($x_length, $y_length) < 2 * self::KARATSUBA_CUTOFF ? |
||
635 | self::_trim(self::_regularMultiply($x_value, $y_value)) : |
||
636 | self::_trim(self::_karatsuba($x_value, $y_value)), |
||
637 | self::SIGN => $x_negative != $y_negative, |
||
638 | ]; |
||
639 | } |
||
640 | |||
641 | /** |
||
642 | * Performs long multiplication on two BigIntegers. |
||
643 | * |
||
644 | * Modeled after 'multiply' in MutableBigInteger.java. |
||
645 | * |
||
646 | * @param array $x_value |
||
647 | * @param array $y_value |
||
648 | * |
||
649 | * @return array |
||
650 | */ |
||
651 | private static function _regularMultiply($x_value, $y_value) |
||
652 | { |
||
653 | $x_length = count($x_value); |
||
654 | $y_length = count($y_value); |
||
655 | |||
656 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
657 | return []; |
||
658 | } |
||
659 | |||
660 | if ($x_length < $y_length) { |
||
661 | $temp = $x_value; |
||
662 | $x_value = $y_value; |
||
663 | $y_value = $temp; |
||
664 | |||
665 | $x_length = count($x_value); |
||
666 | $y_length = count($y_value); |
||
667 | } |
||
668 | |||
669 | $product_value = self::_array_repeat(0, $x_length + $y_length); |
||
670 | |||
671 | // the following for loop could be removed if the for loop following it |
||
672 | // (the one with nested for loops) initially set $i to 0, but |
||
673 | // doing so would also make the result in one set of unnecessary adds, |
||
674 | // since on the outermost loops first pass, $product->value[$k] is going |
||
675 | // to always be 0 |
||
676 | |||
677 | $carry = 0; |
||
678 | |||
679 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0 |
||
680 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
681 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
682 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
683 | } |
||
684 | |||
685 | $product_value[$j] = $carry; |
||
686 | |||
687 | // the above for loop is what the previous comment was talking about. the |
||
688 | // following for loop is the "one with nested for loops" |
||
689 | for ($i = 1; $i < $y_length; ++$i) { |
||
690 | $carry = 0; |
||
691 | |||
692 | for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) { |
||
693 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
694 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
695 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
696 | } |
||
697 | |||
698 | $product_value[$k] = $carry; |
||
699 | } |
||
700 | |||
701 | return $product_value; |
||
702 | } |
||
703 | |||
704 | /** |
||
705 | * Performs Karatsuba multiplication on two BigIntegers. |
||
706 | * |
||
707 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
708 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}. |
||
709 | * |
||
710 | * @param array $x_value |
||
711 | * @param array $y_value |
||
712 | * |
||
713 | * @return array |
||
714 | */ |
||
715 | private static function _karatsuba($x_value, $y_value) |
||
716 | { |
||
717 | $m = min(count($x_value) >> 1, count($y_value) >> 1); |
||
718 | |||
719 | if ($m < self::KARATSUBA_CUTOFF) { |
||
720 | return self::_regularMultiply($x_value, $y_value); |
||
721 | } |
||
722 | |||
723 | $x1 = array_slice($x_value, $m); |
||
724 | $x0 = array_slice($x_value, 0, $m); |
||
725 | $y1 = array_slice($y_value, $m); |
||
726 | $y0 = array_slice($y_value, 0, $m); |
||
727 | |||
728 | $z2 = self::_karatsuba($x1, $y1); |
||
729 | $z0 = self::_karatsuba($x0, $y0); |
||
730 | |||
731 | $z1 = self::_add($x1, false, $x0, false); |
||
732 | $temp = self::_add($y1, false, $y0, false); |
||
733 | $z1 = self::_karatsuba($z1[self::VALUE], $temp[self::VALUE]); |
||
734 | $temp = self::_add($z2, false, $z0, false); |
||
735 | $z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
||
736 | |||
737 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
738 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
739 | |||
740 | $xy = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
741 | $xy = self::_add($xy[self::VALUE], $xy[self::SIGN], $z0, false); |
||
742 | |||
743 | return $xy[self::VALUE]; |
||
744 | } |
||
745 | |||
746 | /** |
||
747 | * Performs squaring. |
||
748 | * |
||
749 | * @param array $x |
||
750 | * |
||
751 | * @return array |
||
752 | */ |
||
753 | private static function _square($x = false) |
||
754 | { |
||
755 | return count($x) < 2 * self::KARATSUBA_CUTOFF ? |
||
756 | self::_trim(self::_baseSquare($x)) : |
||
757 | self::_trim(self::_karatsubaSquare($x)); |
||
758 | } |
||
759 | |||
760 | /** |
||
761 | * Performs traditional squaring on two BigIntegers. |
||
762 | * |
||
763 | * Squaring can be done faster than multiplying a number by itself can be. See |
||
764 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} / |
||
765 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information. |
||
766 | * |
||
767 | * @param array $value |
||
768 | * |
||
769 | * @return array |
||
770 | */ |
||
771 | private static function _baseSquare($value) |
||
772 | { |
||
773 | if (empty($value)) { |
||
774 | return []; |
||
775 | } |
||
776 | $square_value = self::_array_repeat(0, 2 * count($value)); |
||
777 | |||
778 | for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) { |
||
779 | $i2 = $i << 1; |
||
780 | |||
781 | $temp = $square_value[$i2] + $value[$i] * $value[$i]; |
||
782 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
783 | $square_value[$i2] = (int) ($temp - self::$baseFull * $carry); |
||
784 | |||
785 | // note how we start from $i+1 instead of 0 as we do in multiplication. |
||
786 | for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) { |
||
787 | $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry; |
||
788 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
789 | $square_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
790 | } |
||
791 | |||
792 | // the following line can yield values larger 2**15. at this point, PHP should switch |
||
793 | // over to floats. |
||
794 | $square_value[$i + $max_index + 1] = $carry; |
||
795 | } |
||
796 | |||
797 | return $square_value; |
||
798 | } |
||
799 | |||
800 | /** |
||
801 | * Performs Karatsuba "squaring" on two BigIntegers. |
||
802 | * |
||
803 | * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
||
804 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}. |
||
805 | * |
||
806 | * @param array $value |
||
807 | * |
||
808 | * @return array |
||
809 | */ |
||
810 | private static function _karatsubaSquare($value) |
||
811 | { |
||
812 | $m = count($value) >> 1; |
||
813 | |||
814 | if ($m < self::KARATSUBA_CUTOFF) { |
||
815 | return self::_baseSquare($value); |
||
816 | } |
||
817 | |||
818 | $x1 = array_slice($value, $m); |
||
819 | $x0 = array_slice($value, 0, $m); |
||
820 | |||
821 | $z2 = self::_karatsubaSquare($x1); |
||
822 | $z0 = self::_karatsubaSquare($x0); |
||
823 | |||
824 | $z1 = self::_add($x1, false, $x0, false); |
||
825 | $z1 = self::_karatsubaSquare($z1[self::VALUE]); |
||
826 | $temp = self::_add($z2, false, $z0, false); |
||
827 | $z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
||
828 | |||
829 | $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
||
830 | $z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
||
831 | |||
832 | $xx = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
||
833 | $xx = self::_add($xx[self::VALUE], $xx[self::SIGN], $z0, false); |
||
834 | |||
835 | return $xx[self::VALUE]; |
||
836 | } |
||
837 | |||
838 | /** |
||
839 | * Divides two BigIntegers. |
||
840 | * |
||
841 | * Returns an array whose first element contains the quotient and whose second element contains the |
||
842 | * "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
||
843 | * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
||
844 | * and the divisor (basically, the "common residue" is the first positive modulo). |
||
845 | * |
||
846 | * Here's an example: |
||
847 | * <code> |
||
848 | * <?php |
||
849 | * $a = new \Jose\Util\ger('10'); |
||
850 | * $b = new \Jose\Util\ger('20'); |
||
851 | * |
||
852 | * list($quotient, $remainder) = $a->divide($b); |
||
853 | * |
||
854 | * echo $quotient->toString(); // outputs 0 |
||
855 | * echo "\r\n"; |
||
856 | * echo $remainder->toString(); // outputs 10 |
||
857 | * ?> |
||
858 | * </code> |
||
859 | * |
||
860 | * @param \Jose\Util\Integer $y |
||
861 | * |
||
862 | * @return array |
||
863 | * |
||
864 | */ |
||
865 | public function divide(BigInteger $y) |
||
866 | { |
||
867 | $quotient = new static(); |
||
868 | $remainder = new static(); |
||
869 | |||
870 | list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
||
871 | |||
872 | if (gmp_sign($remainder->value) < 0) { |
||
873 | $remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
||
874 | } |
||
875 | |||
876 | return [$this->_normalize($quotient), $this->_normalize($remainder)]; |
||
877 | } |
||
878 | |||
879 | /** |
||
880 | * Divides a BigInteger by a regular integer. |
||
881 | * |
||
882 | * abc / x = a00 / x + b0 / x + c / x |
||
883 | * |
||
884 | * @param array $dividend |
||
885 | * @param array $divisor |
||
886 | * |
||
887 | * @return array |
||
888 | */ |
||
889 | private static function _divide_digit($dividend, $divisor) |
||
890 | { |
||
891 | $carry = 0; |
||
892 | $result = []; |
||
893 | |||
894 | for ($i = count($dividend) - 1; $i >= 0; --$i) { |
||
895 | $temp = self::$baseFull * $carry + $dividend[$i]; |
||
896 | $result[$i] = self::_safe_divide($temp, $divisor); |
||
897 | $carry = (int) ($temp - $divisor * $result[$i]); |
||
898 | } |
||
899 | |||
900 | return [$result, $carry]; |
||
901 | } |
||
902 | |||
903 | /** |
||
904 | * Performs modular exponentiation. |
||
905 | * |
||
906 | * Here's an example: |
||
907 | * <code> |
||
908 | * <?php |
||
909 | * $a = new \Jose\Util\ger('10'); |
||
910 | * $b = new \Jose\Util\ger('20'); |
||
911 | * $c = new \Jose\Util\ger('30'); |
||
912 | * |
||
913 | * $c = $a->modPow($b, $c); |
||
914 | * |
||
915 | * echo $c->toString(); // outputs 10 |
||
916 | * ?> |
||
917 | * </code> |
||
918 | * |
||
919 | * @param \Jose\Util\Integer $e |
||
920 | * @param \Jose\Util\Integer $n |
||
921 | * |
||
922 | * @return \Jose\Util\BigInteger |
||
923 | * |
||
924 | * and although the approach involving repeated squaring does vastly better, it, too, is impractical |
||
925 | * for our purposes. The reason being that division - by far the most complicated and time-consuming |
||
926 | * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
||
927 | * |
||
928 | * Modular reductions resolve this issue. Although an individual modular reduction takes more time |
||
929 | * then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
||
930 | * |
||
931 | * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
||
932 | * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
||
933 | * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
||
934 | * the product of two odd numbers is odd), but what about when RSA isn't used? |
||
935 | * |
||
936 | * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
||
937 | * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
||
938 | * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
||
939 | * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
||
940 | * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
||
941 | * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
||
942 | */ |
||
943 | public function modPow(BigInteger $e, BigInteger $n) |
||
944 | { |
||
945 | $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs(); |
||
946 | |||
947 | if ($e->compare(new static()) < 0) { |
||
948 | $e = $e->abs(); |
||
949 | |||
950 | $temp = $this->modInverse($n); |
||
951 | if ($temp === false) { |
||
952 | return false; |
||
953 | } |
||
954 | |||
955 | return $this->_normalize($temp->modPow($e, $n)); |
||
956 | } |
||
957 | |||
958 | $temp = new static(); |
||
959 | $temp->value = gmp_powm($this->value, $e->value, $n->value); |
||
960 | |||
961 | return $this->_normalize($temp); |
||
962 | } |
||
963 | |||
964 | /** |
||
965 | * Performs modular exponentiation. |
||
966 | * |
||
967 | * Alias for modPow(). |
||
968 | * |
||
969 | * @param \Jose\Util\Integer $e |
||
970 | * @param \Jose\Util\Integer $n |
||
971 | * |
||
972 | * @return \Jose\Util\BigInteger |
||
973 | */ |
||
974 | public function powMod(BigInteger $e, BigInteger $n) |
||
975 | { |
||
976 | return $this->modPow($e, $n); |
||
977 | } |
||
978 | |||
979 | /** |
||
980 | * Barrett Modular Reduction. |
||
981 | * |
||
982 | * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} / |
||
983 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly, |
||
984 | * so as not to require negative numbers (initially, this script didn't support negative numbers). |
||
985 | * |
||
986 | * Employs "folding", as described at |
||
987 | * {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from |
||
988 | * it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x." |
||
989 | * |
||
990 | * Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that |
||
991 | * usable on account of (1) its not using reasonable radix points as discussed in |
||
992 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable |
||
993 | * radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that |
||
994 | * (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line |
||
995 | * comments for details. |
||
996 | * |
||
997 | * @param array $n |
||
998 | * @param array $m |
||
999 | * |
||
1000 | * @return array |
||
1001 | */ |
||
1002 | private static function _barrett($n, $m) |
||
1003 | { |
||
1004 | static $cache = [ |
||
1005 | self::VARIABLE => [], |
||
1006 | self::DATA => [], |
||
1007 | ]; |
||
1008 | |||
1009 | $m_length = count($m); |
||
1010 | |||
1011 | // if (self::_compare($n, self::_square($m)) >= 0) { |
||
1012 | if (count($n) > 2 * $m_length) { |
||
1013 | $lhs = new static(); |
||
1014 | $rhs = new static(); |
||
1015 | $lhs->value = $n; |
||
1016 | $rhs->value = $m; |
||
1017 | list(, $temp) = $lhs->divide($rhs); |
||
1018 | |||
1019 | return $temp->value; |
||
1020 | } |
||
1021 | |||
1022 | // if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced |
||
1023 | if ($m_length < 5) { |
||
1024 | return self::_regularBarrett($n, $m); |
||
1025 | } |
||
1026 | |||
1027 | // n = 2 * m.length |
||
1028 | |||
1029 | if (($key = array_search($m, $cache[self::VARIABLE])) === false) { |
||
1030 | $key = count($cache[self::VARIABLE]); |
||
1031 | $cache[self::VARIABLE][] = $m; |
||
1032 | |||
1033 | $lhs = new static(); |
||
1034 | $lhs_value = &$lhs->value; |
||
1035 | $lhs_value = self::_array_repeat(0, $m_length + ($m_length >> 1)); |
||
1036 | $lhs_value[] = 1; |
||
1037 | $rhs = new static(); |
||
1038 | $rhs->value = $m; |
||
1039 | |||
1040 | list($u, $m1) = $lhs->divide($rhs); |
||
1041 | $u = $u->value; |
||
1042 | $m1 = $m1->value; |
||
1043 | |||
1044 | $cache[self::DATA][] = [ |
||
1045 | 'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1) |
||
1046 | 'm1' => $m1, // m.length |
||
1047 | ]; |
||
1048 | } else { |
||
1049 | extract($cache[self::DATA][$key]); |
||
1050 | } |
||
1051 | |||
1052 | $cutoff = $m_length + ($m_length >> 1); |
||
1053 | $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1) |
||
1054 | $msd = array_slice($n, $cutoff); // m.length >> 1 |
||
1055 | $lsd = self::_trim($lsd); |
||
1056 | $temp = self::_multiply($msd, false, $m1, false); |
||
1057 | $n = self::_add($lsd, false, $temp[self::VALUE], false); // m.length + (m.length >> 1) + 1 |
||
1058 | |||
1059 | if ($m_length & 1) { |
||
1060 | return self::_regularBarrett($n[self::VALUE], $m); |
||
1061 | } |
||
1062 | |||
1063 | // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2 |
||
1064 | $temp = array_slice($n[self::VALUE], $m_length - 1); |
||
1065 | // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2 |
||
1066 | // if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1 |
||
1067 | $temp = self::_multiply($temp, false, $u, false); |
||
1068 | // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1 |
||
1069 | // if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) |
||
1070 | $temp = array_slice($temp[self::VALUE], ($m_length >> 1) + 1); |
||
1071 | // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1 |
||
1072 | // if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1) |
||
1073 | $temp = self::_multiply($temp, false, $m, false); |
||
1074 | |||
1075 | // at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit |
||
1076 | // number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop |
||
1077 | // following this comment would loop a lot (hence our calling _regularBarrett() in that situation). |
||
1078 | |||
1079 | $result = self::_subtract($n[self::VALUE], false, $temp[self::VALUE], false); |
||
1080 | |||
1081 | while (self::_compare($result[self::VALUE], $result[self::SIGN], $m, false) >= 0) { |
||
1082 | $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $m, false); |
||
1083 | } |
||
1084 | |||
1085 | return $result[self::VALUE]; |
||
1086 | } |
||
1087 | |||
1088 | /** |
||
1089 | * (Regular) Barrett Modular Reduction. |
||
1090 | * |
||
1091 | * For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this |
||
1092 | * is that this function does not fold the denominator into a smaller form. |
||
1093 | * |
||
1094 | * @param array $x |
||
1095 | * @param array $n |
||
1096 | * |
||
1097 | * @return array |
||
1098 | */ |
||
1099 | private static function _regularBarrett($x, $n) |
||
1100 | { |
||
1101 | static $cache = [ |
||
1102 | self::VARIABLE => [], |
||
1103 | self::DATA => [], |
||
1104 | ]; |
||
1105 | |||
1106 | $n_length = count($n); |
||
1107 | |||
1108 | if (count($x) > 2 * $n_length) { |
||
1109 | $lhs = new static(); |
||
1110 | $rhs = new static(); |
||
1111 | $lhs->value = $x; |
||
1112 | $rhs->value = $n; |
||
1113 | list(, $temp) = $lhs->divide($rhs); |
||
1114 | |||
1115 | return $temp->value; |
||
1116 | } |
||
1117 | |||
1118 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
1119 | $key = count($cache[self::VARIABLE]); |
||
1120 | $cache[self::VARIABLE][] = $n; |
||
1121 | $lhs = new static(); |
||
1122 | $lhs_value = &$lhs->value; |
||
1123 | $lhs_value = self::_array_repeat(0, 2 * $n_length); |
||
1124 | $lhs_value[] = 1; |
||
1125 | $rhs = new static(); |
||
1126 | $rhs->value = $n; |
||
1127 | list($temp) = $lhs->divide($rhs); // m.length |
||
1128 | $cache[self::DATA][] = $temp->value; |
||
1129 | } |
||
1130 | |||
1131 | // 2 * m.length - (m.length - 1) = m.length + 1 |
||
1132 | $temp = array_slice($x, $n_length - 1); |
||
1133 | // (m.length + 1) + m.length = 2 * m.length + 1 |
||
1134 | $temp = self::_multiply($temp, false, $cache[self::DATA][$key], false); |
||
1135 | // (2 * m.length + 1) - (m.length - 1) = m.length + 2 |
||
1136 | $temp = array_slice($temp[self::VALUE], $n_length + 1); |
||
1137 | |||
1138 | // m.length + 1 |
||
1139 | $result = array_slice($x, 0, $n_length + 1); |
||
1140 | // m.length + 1 |
||
1141 | $temp = self::_multiplyLower($temp, false, $n, false, $n_length + 1); |
||
1142 | // $temp == array_slice(self::_multiply($temp, false, $n, false)->value, 0, $n_length + 1) |
||
1143 | |||
1144 | if (self::_compare($result, false, $temp[self::VALUE], $temp[self::SIGN]) < 0) { |
||
1145 | $corrector_value = self::_array_repeat(0, $n_length + 1); |
||
1146 | $corrector_value[count($corrector_value)] = 1; |
||
1147 | $result = self::_add($result, false, $corrector_value, false); |
||
1148 | $result = $result[self::VALUE]; |
||
1149 | } |
||
1150 | |||
1151 | // at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits |
||
1152 | $result = self::_subtract($result, false, $temp[self::VALUE], $temp[self::SIGN]); |
||
1153 | while (self::_compare($result[self::VALUE], $result[self::SIGN], $n, false) > 0) { |
||
1154 | $result = self::_subtract($result[self::VALUE], $result[self::SIGN], $n, false); |
||
1155 | } |
||
1156 | |||
1157 | return $result[self::VALUE]; |
||
1158 | } |
||
1159 | |||
1160 | /** |
||
1161 | * Performs long multiplication up to $stop digits. |
||
1162 | * |
||
1163 | * If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved. |
||
1164 | * |
||
1165 | * @param array $x_value |
||
1166 | * @param bool $x_negative |
||
1167 | * @param array $y_value |
||
1168 | * @param bool $y_negative |
||
1169 | * @param int $stop |
||
1170 | * |
||
1171 | * @return array |
||
1172 | */ |
||
1173 | private static function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop) |
||
1174 | { |
||
1175 | $x_length = count($x_value); |
||
1176 | $y_length = count($y_value); |
||
1177 | |||
1178 | if (!$x_length || !$y_length) { // a 0 is being multiplied |
||
1179 | return [ |
||
1180 | self::VALUE => [], |
||
1181 | self::SIGN => false, |
||
1182 | ]; |
||
1183 | } |
||
1184 | |||
1185 | if ($x_length < $y_length) { |
||
1186 | $temp = $x_value; |
||
1187 | $x_value = $y_value; |
||
1188 | $y_value = $temp; |
||
1189 | |||
1190 | $x_length = count($x_value); |
||
1191 | $y_length = count($y_value); |
||
1192 | } |
||
1193 | |||
1194 | $product_value = self::_array_repeat(0, $x_length + $y_length); |
||
1195 | |||
1196 | // the following for loop could be removed if the for loop following it |
||
1197 | // (the one with nested for loops) initially set $i to 0, but |
||
1198 | // doing so would also make the result in one set of unnecessary adds, |
||
1199 | // since on the outermost loops first pass, $product->value[$k] is going |
||
1200 | // to always be 0 |
||
1201 | |||
1202 | $carry = 0; |
||
1203 | |||
1204 | for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i |
||
1205 | $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
||
1206 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
1207 | $product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
||
1208 | } |
||
1209 | |||
1210 | if ($j < $stop) { |
||
1211 | $product_value[$j] = $carry; |
||
1212 | } |
||
1213 | |||
1214 | // the above for loop is what the previous comment was talking about. the |
||
1215 | // following for loop is the "one with nested for loops" |
||
1216 | |||
1217 | for ($i = 1; $i < $y_length; ++$i) { |
||
1218 | $carry = 0; |
||
1219 | |||
1220 | for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) { |
||
1221 | $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
||
1222 | $carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
||
1223 | $product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
||
1224 | } |
||
1225 | |||
1226 | if ($k < $stop) { |
||
1227 | $product_value[$k] = $carry; |
||
1228 | } |
||
1229 | } |
||
1230 | |||
1231 | return [ |
||
1232 | self::VALUE => self::_trim($product_value), |
||
1233 | self::SIGN => $x_negative != $y_negative, |
||
1234 | ]; |
||
1235 | } |
||
1236 | |||
1237 | /** |
||
1238 | * Montgomery Modular Reduction. |
||
1239 | * |
||
1240 | * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. |
||
1241 | * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be |
||
1242 | * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function |
||
1243 | * to work correctly. |
||
1244 | * |
||
1245 | * @param array $x |
||
1246 | * @param array $n |
||
1247 | * |
||
1248 | * @return array |
||
1249 | */ |
||
1250 | private static function _montgomery($x, $n) |
||
1251 | { |
||
1252 | static $cache = [ |
||
1253 | self::VARIABLE => [], |
||
1254 | self::DATA => [], |
||
1255 | ]; |
||
1256 | |||
1257 | if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
||
1258 | $key = count($cache[self::VARIABLE]); |
||
1259 | $cache[self::VARIABLE][] = $x; |
||
1260 | $cache[self::DATA][] = self::_modInverse67108864($n); |
||
1261 | } |
||
1262 | |||
1263 | $k = count($n); |
||
1264 | |||
1265 | $result = [self::VALUE => $x]; |
||
1266 | |||
1267 | for ($i = 0; $i < $k; ++$i) { |
||
1268 | $temp = $result[self::VALUE][$i] * $cache[self::DATA][$key]; |
||
1269 | $temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
||
1270 | $temp = self::_regularMultiply([$temp], $n); |
||
1271 | $temp = array_merge($this->_array_repeat(0, $i), $temp); |
||
1272 | $result = self::_add($result[self::VALUE], false, $temp, false); |
||
1273 | } |
||
1274 | |||
1275 | $result[self::VALUE] = array_slice($result[self::VALUE], $k); |
||
1276 | |||
1277 | if (self::_compare($result, false, $n, false) >= 0) { |
||
1278 | $result = self::_subtract($result[self::VALUE], false, $n, false); |
||
1279 | } |
||
1280 | |||
1281 | return $result[self::VALUE]; |
||
1282 | } |
||
1283 | |||
1284 | /** |
||
1285 | * Modular Inverse of a number mod 2**26 (eg. 67108864). |
||
1286 | * |
||
1287 | * Based off of the bnpInvDigit function implemented and justified in the following URL: |
||
1288 | * |
||
1289 | * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js} |
||
1290 | * |
||
1291 | * The following URL provides more info: |
||
1292 | * |
||
1293 | * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85} |
||
1294 | * |
||
1295 | * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For |
||
1296 | * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields |
||
1297 | * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't |
||
1298 | * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that |
||
1299 | * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the |
||
1300 | * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to |
||
1301 | * 40 bits, which only 64-bit floating points will support. |
||
1302 | * |
||
1303 | * Thanks to Pedro Gimeno Fortea for input! |
||
1304 | * |
||
1305 | * @param array $x |
||
1306 | * |
||
1307 | * @return int |
||
1308 | */ |
||
1309 | private function _modInverse67108864($x) // 2**26 == 67,108,864 |
||
1310 | { |
||
1311 | $x = -$x[0]; |
||
1312 | $result = $x & 0x3; // x**-1 mod 2**2 |
||
1313 | $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4 |
||
1314 | $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8 |
||
1315 | $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16 |
||
1316 | $result = fmod($result * (2 - fmod($x * $result, self::$baseFull)), self::$baseFull); // x**-1 mod 2**26 |
||
1317 | return $result & self::$maxDigit; |
||
1318 | } |
||
1319 | |||
1320 | /** |
||
1321 | * Calculates modular inverses. |
||
1322 | * |
||
1323 | * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
||
1324 | * |
||
1325 | * Here's an example: |
||
1326 | * <code> |
||
1327 | * <?php |
||
1328 | * $a = new \Jose\Util\teger(30); |
||
1329 | * $b = new \Jose\Util\teger(17); |
||
1330 | * |
||
1331 | * $c = $a->modInverse($b); |
||
1332 | * echo $c->toString(); // outputs 4 |
||
1333 | * |
||
1334 | * echo "\r\n"; |
||
1335 | * |
||
1336 | * $d = $a->multiply($c); |
||
1337 | * list(, $d) = $d->divide($b); |
||
1338 | * echo $d; // outputs 1 (as per the definition of modular inverse) |
||
1339 | * ?> |
||
1340 | * </code> |
||
1341 | * |
||
1342 | * @param \Jose\Util\Integer $n |
||
1343 | * |
||
1344 | * @return \Jose\Util\eger|false |
||
1345 | * |
||
1346 | */ |
||
1347 | public function modInverse(BigInteger $n) |
||
1348 | { |
||
1349 | $temp = new static(); |
||
1350 | $temp->value = gmp_invert($this->value, $n->value); |
||
1351 | |||
1352 | return ($temp->value === false) ? false : $this->_normalize($temp); |
||
1353 | } |
||
1354 | |||
1355 | /** |
||
1356 | * Calculates the greatest common divisor and Bezout's identity. |
||
1357 | * |
||
1358 | * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that |
||
1359 | * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which |
||
1360 | * combination is returned is dependant upon which mode is in use. See |
||
1361 | * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. |
||
1362 | * |
||
1363 | * Here's an example: |
||
1364 | * <code> |
||
1365 | * <?php |
||
1366 | * $a = new \Jose\Util\eger(693); |
||
1367 | * $b = new \Jose\Util\eger(609); |
||
1368 | * |
||
1369 | * extract($a->extendedGCD($b)); |
||
1370 | * |
||
1371 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
1372 | * echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21 |
||
1373 | * ?> |
||
1374 | * </code> |
||
1375 | * |
||
1376 | * @param \Jose\Util\Integer $n |
||
1377 | * |
||
1378 | * @return \Jose\Util\BigInteger |
||
1379 | * |
||
1380 | * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, |
||
1381 | * the more traditional algorithim requires "relatively costly multiple-precision divisions". |
||
1382 | */ |
||
1383 | public function extendedGCD(BigInteger $n) |
||
1384 | { |
||
1385 | extract(gmp_gcdext($this->value, $n->value)); |
||
1386 | |||
1387 | return [ |
||
1388 | 'gcd' => $this->_normalize(new static($g)), |
||
1389 | 'x' => $this->_normalize(new static($s)), |
||
1390 | 'y' => $this->_normalize(new static($t)), |
||
1391 | ]; |
||
1392 | } |
||
1393 | |||
1394 | /** |
||
1395 | * Calculates the greatest common divisor. |
||
1396 | * |
||
1397 | * Say you have 693 and 609. The GCD is 21. |
||
1398 | * |
||
1399 | * Here's an example: |
||
1400 | * <code> |
||
1401 | * <?php |
||
1402 | * $a = new \Jose\Util\eger(693); |
||
1403 | * $b = new \Jose\Util\eger(609); |
||
1404 | * |
||
1405 | * $gcd = a->extendedGCD($b); |
||
1406 | * |
||
1407 | * echo $gcd->toString() . "\r\n"; // outputs 21 |
||
1408 | * ?> |
||
1409 | * </code> |
||
1410 | * |
||
1411 | * @param \Jose\Util\Integer $n |
||
1412 | * |
||
1413 | * @return \Jose\Util\BigInteger |
||
1414 | */ |
||
1415 | public function gcd(BigInteger $n) |
||
1416 | { |
||
1417 | extract($this->extendedGCD($n)); |
||
1418 | |||
1419 | return $gcd; |
||
1420 | } |
||
1421 | |||
1422 | /** |
||
1423 | * Absolute value. |
||
1424 | * |
||
1425 | * @return \Jose\Util\BigInteger |
||
1426 | */ |
||
1427 | public function abs() |
||
1428 | { |
||
1429 | $temp = new static(); |
||
1430 | |||
1431 | $temp->value = gmp_abs($this->value); |
||
1432 | |||
1433 | return $temp; |
||
1434 | } |
||
1435 | |||
1436 | /** |
||
1437 | * Compares two numbers. |
||
1438 | * |
||
1439 | * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
||
1440 | * demonstrated thusly: |
||
1441 | * |
||
1442 | * $x > $y: $x->compare($y) > 0 |
||
1443 | * $x < $y: $x->compare($y) < 0 |
||
1444 | * $x == $y: $x->compare($y) == 0 |
||
1445 | * |
||
1446 | * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
||
1447 | * |
||
1448 | * @param \Jose\Util\Integer $y |
||
1449 | * |
||
1450 | * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
||
1451 | * |
||
1452 | */ |
||
1453 | public function compare(BigInteger $y) |
||
1454 | { |
||
1455 | return gmp_cmp($this->value, $y->value); |
||
1456 | } |
||
1457 | |||
1458 | /** |
||
1459 | * Compares two numbers. |
||
1460 | * |
||
1461 | * @param array $x_value |
||
1462 | * @param bool $x_negative |
||
1463 | * @param array $y_value |
||
1464 | * @param bool $y_negative |
||
1465 | * |
||
1466 | * @return int |
||
1467 | */ |
||
1468 | private static function _compare($x_value, $x_negative, $y_value, $y_negative) |
||
1469 | { |
||
1470 | if ($x_negative != $y_negative) { |
||
1471 | return (!$x_negative && $y_negative) ? 1 : -1; |
||
1472 | } |
||
1473 | |||
1474 | $result = $x_negative ? -1 : 1; |
||
1475 | |||
1476 | if (count($x_value) != count($y_value)) { |
||
1477 | return (count($x_value) > count($y_value)) ? $result : -$result; |
||
1478 | } |
||
1479 | $size = max(count($x_value), count($y_value)); |
||
1480 | |||
1481 | $x_value = array_pad($x_value, $size, 0); |
||
1482 | $y_value = array_pad($y_value, $size, 0); |
||
1483 | |||
1484 | for ($i = count($x_value) - 1; $i >= 0; --$i) { |
||
1485 | if ($x_value[$i] != $y_value[$i]) { |
||
1486 | return ($x_value[$i] > $y_value[$i]) ? $result : -$result; |
||
1487 | } |
||
1488 | } |
||
1489 | |||
1490 | return 0; |
||
1491 | } |
||
1492 | |||
1493 | /** |
||
1494 | * Tests the equality of two numbers. |
||
1495 | * |
||
1496 | * If you need to see if one number is greater than or less than another number, use BigInteger::compare() |
||
1497 | * |
||
1498 | * @param \Jose\Util\Integer $x |
||
1499 | * |
||
1500 | * @return bool |
||
1501 | */ |
||
1502 | public function equals(BigInteger $x) |
||
1503 | { |
||
1504 | return gmp_cmp($this->value, $x->value) == 0; |
||
1505 | } |
||
1506 | |||
1507 | /** |
||
1508 | * Set Precision. |
||
1509 | * |
||
1510 | * Some bitwise operations give different results depending on the precision being used. Examples include left |
||
1511 | * shift, not, and rotates. |
||
1512 | * |
||
1513 | * @param int $bits |
||
1514 | */ |
||
1515 | public function setPrecision($bits) |
||
1516 | { |
||
1517 | if ($bits < 1) { |
||
1518 | $this->precision = -1; |
||
1519 | $this->bitmask = false; |
||
1520 | |||
1521 | return; |
||
1522 | } |
||
1523 | $this->precision = $bits; |
||
1524 | if (MATH_BIGINTEGER_MODE != self::MODE_BCMATH) { |
||
1525 | $this->bitmask = new static(chr((1 << ($bits & 0x7)) - 1).str_repeat(chr(0xFF), $bits >> 3), 256); |
||
1526 | } else { |
||
1527 | $this->bitmask = new static(bcpow('2', $bits, 0)); |
||
1528 | } |
||
1529 | |||
1530 | $temp = $this->_normalize($this); |
||
1531 | $this->value = $temp->value; |
||
1532 | } |
||
1533 | |||
1534 | /** |
||
1535 | * Get Precision. |
||
1536 | * |
||
1537 | * @return int |
||
1538 | */ |
||
1539 | public function getPrecision() |
||
1540 | { |
||
1541 | return $this->precision; |
||
1542 | } |
||
1543 | |||
1544 | /** |
||
1545 | * Logical And. |
||
1546 | * |
||
1547 | * @param \Jose\Util\Integer $x |
||
1548 | * |
||
1549 | * |
||
1550 | * @return \Jose\Util\BigInteger |
||
1551 | */ |
||
1552 | public function bitwise_and(BigInteger $x) |
||
1553 | { |
||
1554 | $temp = new static(); |
||
1555 | $temp->value = gmp_and($this->value, $x->value); |
||
1556 | |||
1557 | return $this->_normalize($temp); |
||
1558 | } |
||
1559 | |||
1560 | /** |
||
1561 | * Logical Or. |
||
1562 | * |
||
1563 | * @param \Jose\Util\Integer $x |
||
1564 | * |
||
1565 | * |
||
1566 | * @return \Jose\Util\BigInteger |
||
1567 | */ |
||
1568 | public function bitwise_or(BigInteger $x) |
||
1569 | { |
||
1570 | $temp = new static(); |
||
1571 | $temp->value = gmp_or($this->value, $x->value); |
||
1572 | |||
1573 | return $this->_normalize($temp); |
||
1574 | } |
||
1575 | |||
1576 | /** |
||
1577 | * Logical Exclusive-Or. |
||
1578 | * |
||
1579 | * @param \Jose\Util\Integer $x |
||
1580 | * |
||
1581 | * |
||
1582 | * @return \Jose\Util\BigInteger |
||
1583 | */ |
||
1584 | public function bitwise_xor(BigInteger $x) |
||
1585 | { |
||
1586 | $temp = new static(); |
||
1587 | $temp->value = gmp_xor($this->value, $x->value); |
||
1588 | |||
1589 | return $this->_normalize($temp); |
||
1590 | } |
||
1591 | |||
1592 | /** |
||
1593 | * Logical Not. |
||
1594 | * |
||
1595 | * |
||
1596 | * @return \Jose\Util\BigInteger |
||
1597 | */ |
||
1598 | public function bitwise_not() |
||
1599 | { |
||
1600 | // calculuate "not" without regard to $this->precision |
||
1601 | // (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0) |
||
1602 | $temp = $this->toBytes(); |
||
1603 | if ($temp == '') { |
||
1604 | return ''; |
||
1605 | } |
||
1606 | $pre_msb = decbin(ord($temp[0])); |
||
1607 | $temp = ~$temp; |
||
1608 | $msb = decbin(ord($temp[0])); |
||
1609 | if (strlen($msb) == 8) { |
||
1610 | $msb = substr($msb, strpos($msb, '0')); |
||
1611 | } |
||
1612 | $temp[0] = chr(bindec($msb)); |
||
1613 | |||
1614 | // see if we need to add extra leading 1's |
||
1615 | $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8; |
||
1616 | $new_bits = $this->precision - $current_bits; |
||
1617 | if ($new_bits <= 0) { |
||
1618 | return $this->_normalize(new static($temp, 256)); |
||
1619 | } |
||
1620 | |||
1621 | // generate as many leading 1's as we need to. |
||
1622 | $leading_ones = chr((1 << ($new_bits & 0x7)) - 1).str_repeat(chr(0xFF), $new_bits >> 3); |
||
1623 | |||
1624 | self::_base256_lshift($leading_ones, $current_bits); |
||
1625 | |||
1626 | $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT); |
||
1627 | |||
1628 | return $this->_normalize(new static($leading_ones | $temp, 256)); |
||
1629 | } |
||
1630 | |||
1631 | /** |
||
1632 | * Logical Right Shift. |
||
1633 | * |
||
1634 | * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. |
||
1635 | * |
||
1636 | * @param int $shift |
||
1637 | * |
||
1638 | * @return \Jose\Util\BigInteger |
||
1639 | * |
||
1640 | */ |
||
1641 | public function bitwise_rightShift($shift) |
||
1642 | { |
||
1643 | $temp = new static(); |
||
1644 | |||
1645 | static $two; |
||
1646 | |||
1647 | if (!isset($two)) { |
||
1648 | $two = gmp_init('2'); |
||
1649 | } |
||
1650 | |||
1651 | $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift)); |
||
1652 | |||
1653 | return $this->_normalize($temp); |
||
1654 | } |
||
1655 | |||
1656 | /** |
||
1657 | * Logical Left Shift. |
||
1658 | * |
||
1659 | * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
||
1660 | * |
||
1661 | * @param int $shift |
||
1662 | * |
||
1663 | * @return \Jose\Util\BigInteger |
||
1664 | * |
||
1665 | */ |
||
1666 | public function bitwise_leftShift($shift) |
||
1667 | { |
||
1668 | $temp = new static(); |
||
1669 | |||
1670 | static $two; |
||
1671 | |||
1672 | if (!isset($two)) { |
||
1673 | $two = gmp_init('2'); |
||
1674 | } |
||
1675 | |||
1676 | $temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
||
1677 | |||
1678 | return $this->_normalize($temp); |
||
1679 | } |
||
1680 | |||
1681 | /** |
||
1682 | * Logical Left Rotate. |
||
1683 | * |
||
1684 | * Instead of the top x bits being dropped they're appended to the shifted bit string. |
||
1685 | * |
||
1686 | * @param int $shift |
||
1687 | * |
||
1688 | * @return \Jose\Util\BigInteger |
||
1689 | */ |
||
1690 | public function bitwise_leftRotate($shift) |
||
1691 | { |
||
1692 | $bits = $this->toBytes(); |
||
1693 | |||
1694 | if ($this->precision > 0) { |
||
1695 | $precision = $this->precision; |
||
1696 | if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
||
1697 | $mask = $this->bitmask->subtract(new static(1)); |
||
1698 | $mask = $mask->toBytes(); |
||
1699 | } else { |
||
1700 | $mask = $this->bitmask->toBytes(); |
||
1701 | } |
||
1702 | } else { |
||
1703 | $temp = ord($bits[0]); |
||
1704 | for ($i = 0; $temp >> $i; ++$i) { |
||
1705 | } |
||
1706 | $precision = 8 * strlen($bits) - 8 + $i; |
||
1707 | $mask = chr((1 << ($precision & 0x7)) - 1).str_repeat(chr(0xFF), $precision >> 3); |
||
1708 | } |
||
1709 | |||
1710 | if ($shift < 0) { |
||
1711 | $shift += $precision; |
||
1712 | } |
||
1713 | $shift %= $precision; |
||
1714 | |||
1715 | if (!$shift) { |
||
1716 | return clone $this; |
||
1717 | } |
||
1718 | |||
1719 | $left = $this->bitwise_leftShift($shift); |
||
1720 | $left = $left->bitwise_and(new static($mask, 256)); |
||
1721 | $right = $this->bitwise_rightShift($precision - $shift); |
||
1722 | $result = MATH_BIGINTEGER_MODE != self::MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right); |
||
1723 | |||
1724 | return $this->_normalize($result); |
||
1725 | } |
||
1726 | |||
1727 | /** |
||
1728 | * Logical Right Rotate. |
||
1729 | * |
||
1730 | * Instead of the bottom x bits being dropped they're prepended to the shifted bit string. |
||
1731 | * |
||
1732 | * @param int $shift |
||
1733 | * |
||
1734 | * @return \Jose\Util\BigInteger |
||
1735 | */ |
||
1736 | public function bitwise_rightRotate($shift) |
||
1737 | { |
||
1738 | return $this->bitwise_leftRotate(-$shift); |
||
1739 | } |
||
1740 | |||
1741 | /** |
||
1742 | * Generates a random BigInteger. |
||
1743 | * |
||
1744 | * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
||
1745 | * |
||
1746 | * @param int $length |
||
1747 | * |
||
1748 | * @return \Jose\Util\BigInteger |
||
1749 | */ |
||
1750 | private static function _random_number_helper($size) |
||
1751 | { |
||
1752 | if (class_exists('\phpseclib\Crypt\Random')) { |
||
1753 | $random = random_bytes($size); |
||
1754 | } else { |
||
1755 | $random = ''; |
||
1756 | |||
1757 | if ($size & 1) { |
||
1758 | $random .= chr(mt_rand(0, 255)); |
||
1759 | } |
||
1760 | |||
1761 | $blocks = $size >> 1; |
||
1762 | for ($i = 0; $i < $blocks; ++$i) { |
||
1763 | // mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems |
||
1764 | $random .= pack('n', mt_rand(0, 0xFFFF)); |
||
1765 | } |
||
1766 | } |
||
1767 | |||
1768 | return new static($random, 256); |
||
1769 | } |
||
1770 | |||
1771 | /** |
||
1772 | * Generate a random number. |
||
1773 | * |
||
1774 | * Returns a random number between $min and $max where $min and $max |
||
1775 | * can be defined using one of the two methods: |
||
1776 | * |
||
1777 | * BigInteger::random($min, $max) |
||
1778 | * BigInteger::random($max, $min) |
||
1779 | * |
||
1780 | * @param \Jose\Util\eger $arg1 |
||
1781 | * @param \Jose\Util\eger $arg2 |
||
1782 | * |
||
1783 | * @return \Jose\Util\BigInteger |
||
1784 | */ |
||
1785 | public static function random(BigInteger $min, BigInteger $max) |
||
1786 | { |
||
1787 | $compare = $max->compare($min); |
||
1788 | |||
1789 | if (!$compare) { |
||
1790 | return $this->_normalize($min); |
||
1791 | } elseif ($compare < 0) { |
||
1792 | // if $min is bigger then $max, swap $min and $max |
||
1793 | $temp = $max; |
||
1794 | $max = $min; |
||
1795 | $min = $temp; |
||
1796 | } |
||
1797 | |||
1798 | static $one; |
||
1799 | if (!isset($one)) { |
||
1800 | $one = new static(1); |
||
1801 | } |
||
1802 | |||
1803 | $max = $max->subtract($min->subtract($one)); |
||
1804 | $size = strlen(ltrim($max->toBytes(), chr(0))); |
||
1805 | |||
1806 | /* |
||
1807 | doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
||
1808 | eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
||
1809 | would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
||
1810 | not all numbers would be equally likely. some would be more likely than others. |
||
1811 | |||
1812 | creating a whole new random number until you find one that is within the range doesn't work |
||
1813 | because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
||
1814 | would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
||
1815 | would be pretty high that $random would be greater than $max. |
||
1816 | |||
1817 | phpseclib works around this using the technique described here: |
||
1818 | |||
1819 | http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
||
1820 | */ |
||
1821 | $random_max = new static(chr(1).str_repeat("\0", $size), 256); |
||
1822 | $random = static::_random_number_helper($size); |
||
1823 | |||
1824 | list($max_multiple) = $random_max->divide($max); |
||
1825 | $max_multiple = $max_multiple->multiply($max); |
||
1826 | |||
1827 | while ($random->compare($max_multiple) >= 0) { |
||
1828 | $random = $random->subtract($max_multiple); |
||
1829 | $random_max = $random_max->subtract($max_multiple); |
||
1830 | $random = $random->bitwise_leftShift(8); |
||
1831 | $random = $random->add(self::_random_number_helper(1)); |
||
1832 | $random_max = $random_max->bitwise_leftShift(8); |
||
1833 | list($max_multiple) = $random_max->divide($max); |
||
1834 | $max_multiple = $max_multiple->multiply($max); |
||
1835 | } |
||
1836 | list(, $random) = $random->divide($max); |
||
1837 | |||
1838 | return $random->add($min); |
||
1839 | } |
||
1840 | |||
1841 | /** |
||
1842 | * Generate a random prime number. |
||
1843 | * |
||
1844 | * If there's not a prime within the given range, false will be returned. |
||
1845 | * If more than $timeout seconds have elapsed, give up and return false. |
||
1846 | * |
||
1847 | * @param \Jose\Util\teger $min |
||
1848 | * @param \Jose\Util\teger $max |
||
1849 | * @param int $timeout |
||
1850 | * |
||
1851 | * @return Math_BigInteger|false |
||
1852 | * |
||
1853 | */ |
||
1854 | public static function randomPrime(BigInteger $min, BigInteger $max, $timeout = false) |
||
1855 | { |
||
1856 | $compare = $max->compare($min); |
||
1857 | |||
1858 | if (!$compare) { |
||
1859 | return $min->isPrime() ? $min : false; |
||
0 ignored issues
–
show
|
|||
1860 | } elseif ($compare < 0) { |
||
1861 | // if $min is bigger then $max, swap $min and $max |
||
1862 | $temp = $max; |
||
1863 | $max = $min; |
||
1864 | $min = $temp; |
||
1865 | } |
||
1866 | |||
1867 | static $one, $two; |
||
1868 | if (!isset($one)) { |
||
1869 | $one = new static(1); |
||
1870 | $two = new static(2); |
||
1871 | } |
||
1872 | |||
1873 | $start = time(); |
||
1874 | |||
1875 | $x = self::random($min, $max); |
||
1876 | |||
1877 | // gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>. |
||
1878 | if (MATH_BIGINTEGER_MODE == self::MODE_GMP && extension_loaded('gmp')) { |
||
1879 | $p = new static(); |
||
1880 | $p->value = gmp_nextprime($x->value); |
||
1881 | |||
1882 | if ($p->compare($max) <= 0) { |
||
1883 | return $p; |
||
1884 | } |
||
1885 | |||
1886 | if (!$min->equals($x)) { |
||
1887 | $x = $x->subtract($one); |
||
1888 | } |
||
1889 | |||
1890 | return self::randomPrime($min, $x); |
||
1891 | } |
||
1892 | |||
1893 | if ($x->equals($two)) { |
||
1894 | return $x; |
||
1895 | } |
||
1896 | |||
1897 | $x->_make_odd(); |
||
1898 | if ($x->compare($max) > 0) { |
||
1899 | // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range |
||
1900 | if ($min->equals($max)) { |
||
1901 | return false; |
||
1902 | } |
||
1903 | $x = clone $min; |
||
1904 | $x->_make_odd(); |
||
1905 | } |
||
1906 | |||
1907 | $initial_x = clone $x; |
||
1908 | |||
1909 | while (true) { |
||
1910 | if ($timeout !== false && time() - $start > $timeout) { |
||
1911 | return false; |
||
1912 | } |
||
1913 | |||
1914 | if ($x->isPrime()) { |
||
0 ignored issues
–
show
The method
isPrime() does not seem to exist on object<Jose\Util\BigInteger> .
This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces. This is most likely a typographical error or the method has been renamed. ![]() |
|||
1915 | return $x; |
||
1916 | } |
||
1917 | |||
1918 | $x = $x->add($two); |
||
1919 | |||
1920 | if ($x->compare($max) > 0) { |
||
1921 | $x = clone $min; |
||
1922 | if ($x->equals($two)) { |
||
1923 | return $x; |
||
1924 | } |
||
1925 | $x->_make_odd(); |
||
1926 | } |
||
1927 | |||
1928 | if ($x->equals($initial_x)) { |
||
1929 | return false; |
||
1930 | } |
||
1931 | } |
||
1932 | } |
||
1933 | |||
1934 | /** |
||
1935 | * Make the current number odd. |
||
1936 | * |
||
1937 | * If the current number is odd it'll be unchanged. If it's even, one will be added to it. |
||
1938 | */ |
||
1939 | private function _make_odd() |
||
1940 | { |
||
1941 | switch (MATH_BIGINTEGER_MODE) { |
||
1942 | case self::MODE_GMP: |
||
1943 | gmp_setbit($this->value, 0); |
||
1944 | break; |
||
1945 | case self::MODE_BCMATH: |
||
1946 | if ($this->value[strlen($this->value) - 1] % 2 == 0) { |
||
1947 | $this->value = bcadd($this->value, '1'); |
||
1948 | } |
||
1949 | break; |
||
1950 | default: |
||
1951 | $this->value[0] |= 1; |
||
1952 | } |
||
1953 | } |
||
1954 | |||
1955 | /** |
||
1956 | * Normalize. |
||
1957 | * |
||
1958 | * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
||
1959 | * |
||
1960 | * @param \Jose\Util\BigInteger |
||
1961 | * |
||
1962 | * @return \Jose\Util\BigInteger |
||
1963 | */ |
||
1964 | private function _normalize($result) |
||
1965 | { |
||
1966 | $result->precision = $this->precision; |
||
1967 | $result->bitmask = $this->bitmask; |
||
1968 | |||
1969 | if ($this->bitmask !== false) { |
||
1970 | $result->value = gmp_and($result->value, $result->bitmask->value); |
||
1971 | } |
||
1972 | |||
1973 | return $result; |
||
1974 | } |
||
1975 | |||
1976 | /** |
||
1977 | * Trim. |
||
1978 | * |
||
1979 | * Removes leading zeros |
||
1980 | * |
||
1981 | * @param array $value |
||
1982 | * |
||
1983 | * @return \Jose\Util\BigInteger |
||
1984 | */ |
||
1985 | private static function _trim($value) |
||
1986 | { |
||
1987 | for ($i = count($value) - 1; $i >= 0; --$i) { |
||
1988 | if ($value[$i]) { |
||
1989 | break; |
||
1990 | } |
||
1991 | unset($value[$i]); |
||
1992 | } |
||
1993 | |||
1994 | return $value; |
||
1995 | } |
||
1996 | |||
1997 | /** |
||
1998 | * Array Repeat. |
||
1999 | * |
||
2000 | * @param $input Array |
||
2001 | * @param $multiplier mixed |
||
2002 | * |
||
2003 | * @return array |
||
2004 | */ |
||
2005 | private static function _array_repeat($input, $multiplier) |
||
2006 | { |
||
2007 | return ($multiplier) ? array_fill(0, $multiplier, $input) : []; |
||
2008 | } |
||
2009 | |||
2010 | /** |
||
2011 | * Logical Left Shift. |
||
2012 | * |
||
2013 | * Shifts binary strings $shift bits, essentially multiplying by 2**$shift. |
||
2014 | * |
||
2015 | * @param $x String |
||
2016 | * @param $shift Integer |
||
2017 | * |
||
2018 | * @return string |
||
2019 | */ |
||
2020 | private static function _base256_lshift(&$x, $shift) |
||
2021 | { |
||
2022 | if ($shift == 0) { |
||
2023 | return; |
||
2024 | } |
||
2025 | |||
2026 | $num_bytes = $shift >> 3; // eg. floor($shift/8) |
||
2027 | $shift &= 7; // eg. $shift % 8 |
||
2028 | |||
2029 | $carry = 0; |
||
2030 | for ($i = strlen($x) - 1; $i >= 0; --$i) { |
||
2031 | $temp = ord($x[$i]) << $shift | $carry; |
||
2032 | $x[$i] = chr($temp); |
||
2033 | $carry = $temp >> 8; |
||
2034 | } |
||
2035 | $carry = ($carry != 0) ? chr($carry) : ''; |
||
2036 | $x = $carry.$x.str_repeat(chr(0), $num_bytes); |
||
2037 | } |
||
2038 | |||
2039 | /** |
||
2040 | * Single digit division. |
||
2041 | * |
||
2042 | * Even if int64 is being used the division operator will return a float64 value |
||
2043 | * if the dividend is not evenly divisible by the divisor. Since a float64 doesn't |
||
2044 | * have the precision of int64 this is a problem so, when int64 is being used, |
||
2045 | * we'll guarantee that the dividend is divisible by first subtracting the remainder. |
||
2046 | * |
||
2047 | * @param int $x |
||
2048 | * @param int $y |
||
2049 | * |
||
2050 | * @return int |
||
2051 | */ |
||
2052 | private static function _safe_divide($x, $y) |
||
2053 | { |
||
2054 | if (self::$base === 26) { |
||
2055 | return (int) ($x / $y); |
||
2056 | } |
||
2057 | |||
2058 | // self::$base === 31 |
||
2059 | return ($x - ($x % $y)) / $y; |
||
2060 | } |
||
2061 | } |
||
2062 |
This check looks for calls to methods that do not seem to exist on a given type. It looks for the method on the type itself as well as in inherited classes or implemented interfaces.
This is most likely a typographical error or the method has been renamed.