1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/* |
4
|
|
|
* The MIT License (MIT) |
5
|
|
|
* |
6
|
|
|
* Copyright (c) 2014-2016 Spomky-Labs |
7
|
|
|
* |
8
|
|
|
* This software may be modified and distributed under the terms |
9
|
|
|
* of the MIT license. See the LICENSE file for details. |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace Jose\Util; |
13
|
|
|
|
14
|
|
|
class BigInteger |
15
|
|
|
{ |
16
|
|
|
const MONTGOMERY = 0; |
17
|
|
|
|
18
|
|
|
const BARRETT = 1; |
19
|
|
|
|
20
|
|
|
const POWEROF2 = 2; |
21
|
|
|
|
22
|
|
|
const CLASSIC = 3; |
23
|
|
|
|
24
|
|
|
const NONE = 4; |
25
|
|
|
|
26
|
|
|
/**#@+ |
27
|
|
|
* Array constants |
28
|
|
|
* |
29
|
|
|
* Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and |
30
|
|
|
* multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them. |
31
|
|
|
* |
32
|
|
|
*/ |
33
|
|
|
/** |
34
|
|
|
* $result[self::VALUE] contains the value. |
35
|
|
|
*/ |
36
|
|
|
const VALUE = 0; |
37
|
|
|
/** |
38
|
|
|
* $result[self::SIGN] contains the sign. |
39
|
|
|
*/ |
40
|
|
|
const SIGN = 1; |
41
|
|
|
/**#@-*/ |
42
|
|
|
|
43
|
|
|
/**#@+ |
44
|
|
|
*/ |
45
|
|
|
/** |
46
|
|
|
* Cache constants. |
47
|
|
|
* |
48
|
|
|
* $cache[self::VARIABLE] tells us whether or not the cached data is still valid. |
49
|
|
|
*/ |
50
|
|
|
const VARIABLE = 0; |
51
|
|
|
/** |
52
|
|
|
* $cache[self::DATA] contains the cached data. |
53
|
|
|
*/ |
54
|
|
|
const DATA = 1; |
55
|
|
|
/**#@-*/ |
56
|
|
|
|
57
|
|
|
/** |
58
|
|
|
* Karatsuba Cutoff. |
59
|
|
|
* |
60
|
|
|
* At what point do we switch between Karatsuba multiplication and schoolbook long multiplication? |
61
|
|
|
*/ |
62
|
|
|
const KARATSUBA_CUTOFF = 25; |
63
|
|
|
|
64
|
|
|
/**#@+ |
65
|
|
|
* Static properties used by the pure-PHP implementation. |
66
|
|
|
* |
67
|
|
|
* @see __construct() |
68
|
|
|
*/ |
69
|
|
|
protected static $base; |
70
|
|
|
protected static $baseFull; |
71
|
|
|
protected static $maxDigit; |
72
|
|
|
protected static $msb; |
73
|
|
|
|
74
|
|
|
/** |
75
|
|
|
* $max10 in greatest $max10Len satisfying |
76
|
|
|
* $max10 = 10**$max10Len <= 2**$base. |
77
|
|
|
*/ |
78
|
|
|
protected static $max10; |
79
|
|
|
|
80
|
|
|
/** |
81
|
|
|
* $max10Len in greatest $max10Len satisfying |
82
|
|
|
* $max10 = 10**$max10Len <= 2**$base. |
83
|
|
|
*/ |
84
|
|
|
protected static $max10Len; |
85
|
|
|
protected static $maxDigit2; |
86
|
|
|
/**#@-*/ |
87
|
|
|
|
88
|
|
|
/** |
89
|
|
|
* Holds the BigInteger's value. |
90
|
|
|
* |
91
|
|
|
* @var array |
92
|
|
|
*/ |
93
|
|
|
private $value; |
94
|
|
|
|
95
|
|
|
/** |
96
|
|
|
* Holds the BigInteger's magnitude. |
97
|
|
|
* |
98
|
|
|
* @var bool |
99
|
|
|
*/ |
100
|
|
|
private $is_negative = false; |
101
|
|
|
|
102
|
|
|
/** |
103
|
|
|
* Precision. |
104
|
|
|
*/ |
105
|
|
|
private $precision = -1; |
106
|
|
|
|
107
|
|
|
/** |
108
|
|
|
* Precision Bitmask. |
109
|
|
|
*/ |
110
|
|
|
private $bitmask = false; |
111
|
|
|
|
112
|
|
|
/** |
113
|
|
|
* Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
114
|
|
|
* |
115
|
|
|
* If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
116
|
|
|
* two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
117
|
|
|
* |
118
|
|
|
* Here's an example: |
119
|
|
|
* <code> |
120
|
|
|
* <?php |
121
|
|
|
* $a = new \Jose\Util\in base-16 |
122
|
|
|
* |
123
|
|
|
* echo $a->toString(); // outputs 50 |
124
|
|
|
* ?> |
125
|
|
|
* </code> |
126
|
|
|
* |
127
|
|
|
* @param $x base-10 number or base-$base number if $base set. |
128
|
|
|
* @param int $base |
129
|
|
|
* |
130
|
|
|
* @return \Jose\Util\BigInteger |
|
|
|
|
131
|
|
|
*/ |
132
|
|
|
public function __construct($x = 0, $base = 10) |
133
|
|
|
{ |
134
|
|
|
if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) { |
135
|
|
|
define('MATH_BIGINTEGER_OPENSSL_ENABLED', true); |
136
|
|
|
} |
137
|
|
|
|
138
|
|
|
switch (true) { |
139
|
|
|
case is_resource($x) && get_resource_type($x) == 'GMP integer': |
140
|
|
|
// PHP 5.6 switched GMP from using resources to objects |
141
|
|
|
case $x instanceof \GMP: |
|
|
|
|
142
|
|
|
$this->value = $x; |
|
|
|
|
143
|
|
|
|
144
|
|
|
return; |
145
|
|
|
} |
146
|
|
|
$this->value = gmp_init(0); |
|
|
|
|
147
|
|
|
|
148
|
|
|
// '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
149
|
|
|
// '0' is the only value like this per http://php.net/empty |
150
|
|
|
if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
|
|
|
|
151
|
|
|
return; |
152
|
|
|
} |
153
|
|
|
|
154
|
|
|
switch ($base) { |
155
|
|
|
case -256: |
156
|
|
|
if (ord($x[0]) & 0x80) { |
157
|
|
|
$x = ~$x; |
158
|
|
|
$this->is_negative = true; |
159
|
|
|
} |
160
|
|
|
case 256: |
161
|
|
|
$sign = $this->is_negative ? '-' : ''; |
162
|
|
|
$this->value = gmp_init($sign.'0x'.bin2hex($x)); |
|
|
|
|
163
|
|
|
|
164
|
|
|
if ($this->is_negative) { |
165
|
|
|
$this->is_negative = false; |
166
|
|
|
$temp = $this->add(new static('-1')); |
167
|
|
|
$this->value = $temp->value; |
168
|
|
|
} |
169
|
|
|
break; |
170
|
|
|
case 16: |
171
|
|
|
case -16: |
172
|
|
|
if ($base > 0 && $x[0] == '-') { |
173
|
|
|
$this->is_negative = true; |
174
|
|
|
$x = substr($x, 1); |
175
|
|
|
} |
176
|
|
|
|
177
|
|
|
$x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); |
178
|
|
|
|
179
|
|
|
$is_negative = false; |
180
|
|
|
if ($base < 0 && hexdec($x[0]) >= 8) { |
181
|
|
|
$this->is_negative = $is_negative = true; |
182
|
|
|
$x = bin2hex(~hex2bin($x)); |
183
|
|
|
} |
184
|
|
|
|
185
|
|
|
$temp = $this->is_negative ? '-0x'.$x : '0x'.$x; |
186
|
|
|
$this->value = gmp_init($temp); |
|
|
|
|
187
|
|
|
$this->is_negative = false; |
188
|
|
|
|
189
|
|
|
if ($is_negative) { |
190
|
|
|
$temp = $this->add(new static('-1')); |
191
|
|
|
$this->value = $temp->value; |
192
|
|
|
} |
193
|
|
|
break; |
194
|
|
|
case 10: |
195
|
|
|
case -10: |
196
|
|
|
// (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
197
|
|
|
// (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
198
|
|
|
// [^-0-9].*: find any non-numeric characters and then any characters that follow that |
199
|
|
|
$x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
200
|
|
|
|
201
|
|
|
$this->value = gmp_init($x); |
|
|
|
|
202
|
|
|
break; |
203
|
|
|
case 2: // base-2 support originally implemented by Lluis Pamies - thanks! |
204
|
|
|
case -2: |
205
|
|
|
if ($base > 0 && $x[0] == '-') { |
206
|
|
|
$this->is_negative = true; |
207
|
|
|
$x = substr($x, 1); |
208
|
|
|
} |
209
|
|
|
|
210
|
|
|
$x = preg_replace('#^([01]*).*#', '$1', $x); |
211
|
|
|
$x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT); |
212
|
|
|
|
213
|
|
|
$str = '0x'; |
214
|
|
|
while (strlen($x)) { |
215
|
|
|
$part = substr($x, 0, 4); |
216
|
|
|
$str .= dechex(bindec($part)); |
217
|
|
|
$x = substr($x, 4); |
218
|
|
|
} |
219
|
|
|
|
220
|
|
|
if ($this->is_negative) { |
221
|
|
|
$str = '-'.$str; |
222
|
|
|
} |
223
|
|
|
|
224
|
|
|
$temp = new static($str, 8 * $base); // ie. either -16 or +16 |
225
|
|
|
$this->value = $temp->value; |
226
|
|
|
$this->is_negative = $temp->is_negative; |
227
|
|
|
|
228
|
|
|
break; |
229
|
|
|
default: |
230
|
|
|
// base not supported, so we'll let $this == 0 |
231
|
|
|
} |
232
|
|
|
} |
233
|
|
|
|
234
|
|
|
/** |
235
|
|
|
* Converts a BigInteger to a byte string (eg. base-256). |
236
|
|
|
* |
237
|
|
|
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
238
|
|
|
* saved as two's compliment. |
239
|
|
|
* |
240
|
|
|
* Here's an example: |
241
|
|
|
* <code> |
242
|
|
|
* <?php |
243
|
|
|
* $a = new \Jose\Util\ger('65'); |
244
|
|
|
* |
245
|
|
|
* echo $a->toBytes(); // outputs chr(65) |
246
|
|
|
* ?> |
247
|
|
|
* </code> |
248
|
|
|
* |
249
|
|
|
* @param bool $twos_compliment |
250
|
|
|
* |
251
|
|
|
* @return string |
252
|
|
|
* |
253
|
|
|
*/ |
254
|
|
|
public function toBytes($twos_compliment = false) |
255
|
|
|
{ |
256
|
|
|
if ($twos_compliment) { |
257
|
|
|
$comparison = $this->compare(new static()); |
258
|
|
|
if ($comparison == 0) { |
259
|
|
|
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
260
|
|
|
} |
261
|
|
|
|
262
|
|
|
$temp = $comparison < 0 ? $this->add(new static(1)) : $this; |
263
|
|
|
$bytes = $temp->toBytes(); |
264
|
|
|
|
265
|
|
|
if (empty($bytes)) { // eg. if the number we're trying to convert is -1 |
266
|
|
|
$bytes = chr(0); |
267
|
|
|
} |
268
|
|
|
|
269
|
|
|
if (ord($bytes[0]) & 0x80) { |
270
|
|
|
$bytes = chr(0).$bytes; |
271
|
|
|
} |
272
|
|
|
|
273
|
|
|
return $comparison < 0 ? ~$bytes : $bytes; |
274
|
|
|
} |
275
|
|
|
|
276
|
|
|
if (gmp_cmp($this->value, gmp_init(0)) == 0) { |
277
|
|
|
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; |
278
|
|
|
} |
279
|
|
|
|
280
|
|
|
$temp = gmp_strval(gmp_abs($this->value), 16); |
281
|
|
|
$temp = (strlen($temp) & 1) ? '0'.$temp : $temp; |
282
|
|
|
$temp = hex2bin($temp); |
283
|
|
|
|
284
|
|
|
return $this->precision > 0 ? |
285
|
|
|
substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : |
286
|
|
|
ltrim($temp, chr(0)); |
287
|
|
|
} |
288
|
|
|
|
289
|
|
|
/** |
290
|
|
|
* Converts a BigInteger to a hex string (eg. base-16)). |
291
|
|
|
* |
292
|
|
|
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
293
|
|
|
* saved as two's compliment. |
294
|
|
|
* |
295
|
|
|
* Here's an example: |
296
|
|
|
* <code> |
297
|
|
|
* <?php |
298
|
|
|
* $a = new \Jose\Util\ger('65'); |
299
|
|
|
* |
300
|
|
|
* echo $a->toHex(); // outputs '41' |
301
|
|
|
* ?> |
302
|
|
|
* </code> |
303
|
|
|
* |
304
|
|
|
* @param bool $twos_compliment |
305
|
|
|
* |
306
|
|
|
* @return string |
307
|
|
|
* |
308
|
|
|
*/ |
309
|
|
|
public function toHex($twos_compliment = false) |
310
|
|
|
{ |
311
|
|
|
return bin2hex($this->toBytes($twos_compliment)); |
312
|
|
|
} |
313
|
|
|
|
314
|
|
|
/** |
315
|
|
|
* Converts a BigInteger to a bit string (eg. base-2). |
316
|
|
|
* |
317
|
|
|
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
318
|
|
|
* saved as two's compliment. |
319
|
|
|
* |
320
|
|
|
* Here's an example: |
321
|
|
|
* <code> |
322
|
|
|
* <?php |
323
|
|
|
* $a = new \Jose\Util\ger('65'); |
324
|
|
|
* |
325
|
|
|
* echo $a->toBits(); // outputs '1000001' |
326
|
|
|
* ?> |
327
|
|
|
* </code> |
328
|
|
|
* |
329
|
|
|
* @param bool $twos_compliment |
330
|
|
|
* |
331
|
|
|
* @return string |
332
|
|
|
* |
333
|
|
|
*/ |
334
|
|
|
public function toBits($twos_compliment = false) |
335
|
|
|
{ |
336
|
|
|
$hex = $this->toHex($twos_compliment); |
337
|
|
|
$bits = ''; |
338
|
|
|
for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i -= 8) { |
339
|
|
|
$bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT).$bits; |
340
|
|
|
} |
341
|
|
|
if ($start) { // hexdec('') == 0 |
342
|
|
|
$bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT).$bits; |
343
|
|
|
} |
344
|
|
|
$result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0'); |
345
|
|
|
|
346
|
|
|
if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) { |
347
|
|
|
return '0'.$result; |
348
|
|
|
} |
349
|
|
|
|
350
|
|
|
return $result; |
351
|
|
|
} |
352
|
|
|
|
353
|
|
|
/** |
354
|
|
|
* Adds two BigIntegers. |
355
|
|
|
* |
356
|
|
|
* Here's an example: |
357
|
|
|
* <code> |
358
|
|
|
* <?php |
359
|
|
|
* $a = new \Jose\Util\ger('10'); |
360
|
|
|
* $b = new \Jose\Util\ger('20'); |
361
|
|
|
* |
362
|
|
|
* $c = $a->add($b); |
363
|
|
|
* |
364
|
|
|
* echo $c->toString(); // outputs 30 |
365
|
|
|
* ?> |
366
|
|
|
* </code> |
367
|
|
|
* |
368
|
|
|
* @param \Jose\Util\Integer $y |
369
|
|
|
* |
370
|
|
|
* @return \Jose\Util\BigInteger |
371
|
|
|
* |
372
|
|
|
*/ |
373
|
|
|
public function add(BigInteger $y) |
374
|
|
|
{ |
375
|
|
|
$temp = new static(); |
376
|
|
|
$temp->value = gmp_add($this->value, $y->value); |
|
|
|
|
377
|
|
|
|
378
|
|
|
return $this->_normalize($temp); |
379
|
|
|
} |
380
|
|
|
|
381
|
|
|
/** |
382
|
|
|
* Performs addition. |
383
|
|
|
* |
384
|
|
|
* @param array $x_value |
385
|
|
|
* @param bool $x_negative |
386
|
|
|
* @param array $y_value |
387
|
|
|
* @param bool $y_negative |
388
|
|
|
* |
389
|
|
|
* @return array |
390
|
|
|
*/ |
391
|
|
|
private static function _add($x_value, $x_negative, $y_value, $y_negative) |
392
|
|
|
{ |
393
|
|
|
$x_size = count($x_value); |
394
|
|
|
$y_size = count($y_value); |
395
|
|
|
|
396
|
|
|
if ($x_size == 0) { |
397
|
|
|
return [ |
398
|
|
|
self::VALUE => $y_value, |
399
|
|
|
self::SIGN => $y_negative, |
400
|
|
|
]; |
401
|
|
|
} elseif ($y_size == 0) { |
402
|
|
|
return [ |
403
|
|
|
self::VALUE => $x_value, |
404
|
|
|
self::SIGN => $x_negative, |
405
|
|
|
]; |
406
|
|
|
} |
407
|
|
|
|
408
|
|
|
// subtract, if appropriate |
409
|
|
|
if ($x_negative != $y_negative) { |
410
|
|
|
if ($x_value == $y_value) { |
411
|
|
|
return [ |
412
|
|
|
self::VALUE => [], |
413
|
|
|
self::SIGN => false, |
414
|
|
|
]; |
415
|
|
|
} |
416
|
|
|
|
417
|
|
|
$temp = self::_subtract($x_value, false, $y_value, false); |
418
|
|
|
$temp[self::SIGN] = self::_compare($x_value, false, $y_value, false) > 0 ? |
419
|
|
|
$x_negative : $y_negative; |
420
|
|
|
|
421
|
|
|
return $temp; |
422
|
|
|
} |
423
|
|
|
|
424
|
|
|
if ($x_size < $y_size) { |
425
|
|
|
$size = $x_size; |
426
|
|
|
$value = $y_value; |
427
|
|
|
} else { |
428
|
|
|
$size = $y_size; |
429
|
|
|
$value = $x_value; |
430
|
|
|
} |
431
|
|
|
|
432
|
|
|
$value[count($value)] = 0; // just in case the carry adds an extra digit |
433
|
|
|
|
434
|
|
|
$carry = 0; |
435
|
|
|
for ($i = 0, $j = 1; $j < $size; $i += 2, $j += 2) { |
436
|
|
|
$sum = $x_value[$j] * self::$baseFull + $x_value[$i] + $y_value[$j] * self::$baseFull + $y_value[$i] + $carry; |
437
|
|
|
$carry = $sum >= self::$maxDigit2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
438
|
|
|
$sum = $carry ? $sum - self::$maxDigit2 : $sum; |
439
|
|
|
|
440
|
|
|
$temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
441
|
|
|
|
442
|
|
|
$value[$i] = (int) ($sum - self::$baseFull * $temp); // eg. a faster alternative to fmod($sum, 0x4000000) |
443
|
|
|
$value[$j] = $temp; |
444
|
|
|
} |
445
|
|
|
|
446
|
|
|
if ($j == $size) { // ie. if $y_size is odd |
447
|
|
|
$sum = $x_value[$i] + $y_value[$i] + $carry; |
448
|
|
|
$carry = $sum >= self::$baseFull; |
449
|
|
|
$value[$i] = $carry ? $sum - self::$baseFull : $sum; |
450
|
|
|
++$i; // ie. let $i = $j since we've just done $value[$i] |
451
|
|
|
} |
452
|
|
|
|
453
|
|
|
if ($carry) { |
454
|
|
|
for (; $value[$i] == self::$maxDigit; ++$i) { |
455
|
|
|
$value[$i] = 0; |
456
|
|
|
} |
457
|
|
|
++$value[$i]; |
458
|
|
|
} |
459
|
|
|
|
460
|
|
|
return [ |
461
|
|
|
self::VALUE => self::_trim($value), |
462
|
|
|
self::SIGN => $x_negative, |
463
|
|
|
]; |
464
|
|
|
} |
465
|
|
|
|
466
|
|
|
/** |
467
|
|
|
* Subtracts two BigIntegers. |
468
|
|
|
* |
469
|
|
|
* Here's an example: |
470
|
|
|
* <code> |
471
|
|
|
* <?php |
472
|
|
|
* $a = new \Jose\Util\ger('10'); |
473
|
|
|
* $b = new \Jose\Util\ger('20'); |
474
|
|
|
* |
475
|
|
|
* $c = $a->subtract($b); |
476
|
|
|
* |
477
|
|
|
* echo $c->toString(); // outputs -10 |
478
|
|
|
* ?> |
479
|
|
|
* </code> |
480
|
|
|
* |
481
|
|
|
* @param \Jose\Util\Integer $y |
482
|
|
|
* |
483
|
|
|
* @return \Jose\Util\BigInteger |
484
|
|
|
* |
485
|
|
|
*/ |
486
|
|
|
public function subtract(BigInteger $y) |
487
|
|
|
{ |
488
|
|
|
$temp = new static(); |
489
|
|
|
$temp->value = gmp_sub($this->value, $y->value); |
|
|
|
|
490
|
|
|
|
491
|
|
|
return $this->_normalize($temp); |
492
|
|
|
} |
493
|
|
|
|
494
|
|
|
/** |
495
|
|
|
* Performs subtraction. |
496
|
|
|
* |
497
|
|
|
* @param array $x_value |
498
|
|
|
* @param bool $x_negative |
499
|
|
|
* @param array $y_value |
500
|
|
|
* @param bool $y_negative |
501
|
|
|
* |
502
|
|
|
* @return array |
503
|
|
|
*/ |
504
|
|
|
private static function _subtract($x_value, $x_negative, $y_value, $y_negative) |
505
|
|
|
{ |
506
|
|
|
$x_size = count($x_value); |
507
|
|
|
$y_size = count($y_value); |
508
|
|
|
|
509
|
|
|
if ($x_size == 0) { |
510
|
|
|
return [ |
511
|
|
|
self::VALUE => $y_value, |
512
|
|
|
self::SIGN => !$y_negative, |
513
|
|
|
]; |
514
|
|
|
} elseif ($y_size == 0) { |
515
|
|
|
return [ |
516
|
|
|
self::VALUE => $x_value, |
517
|
|
|
self::SIGN => $x_negative, |
518
|
|
|
]; |
519
|
|
|
} |
520
|
|
|
|
521
|
|
|
// add, if appropriate (ie. -$x - +$y or +$x - -$y) |
522
|
|
|
if ($x_negative != $y_negative) { |
523
|
|
|
$temp = self::_add($x_value, false, $y_value, false); |
524
|
|
|
$temp[self::SIGN] = $x_negative; |
525
|
|
|
|
526
|
|
|
return $temp; |
527
|
|
|
} |
528
|
|
|
|
529
|
|
|
$diff = self::_compare($x_value, $x_negative, $y_value, $y_negative); |
530
|
|
|
|
531
|
|
|
if (!$diff) { |
532
|
|
|
return [ |
533
|
|
|
self::VALUE => [], |
534
|
|
|
self::SIGN => false, |
535
|
|
|
]; |
536
|
|
|
} |
537
|
|
|
|
538
|
|
|
// switch $x and $y around, if appropriate. |
539
|
|
|
if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) { |
540
|
|
|
$temp = $x_value; |
541
|
|
|
$x_value = $y_value; |
542
|
|
|
$y_value = $temp; |
543
|
|
|
|
544
|
|
|
$x_negative = !$x_negative; |
545
|
|
|
|
546
|
|
|
$x_size = count($x_value); |
|
|
|
|
547
|
|
|
$y_size = count($y_value); |
548
|
|
|
} |
549
|
|
|
|
550
|
|
|
// at this point, $x_value should be at least as big as - if not bigger than - $y_value |
551
|
|
|
|
552
|
|
|
$carry = 0; |
553
|
|
|
for ($i = 0, $j = 1; $j < $y_size; $i += 2, $j += 2) { |
554
|
|
|
$sum = $x_value[$j] * self::$baseFull + $x_value[$i] - $y_value[$j] * self::$baseFull - $y_value[$i] - $carry; |
555
|
|
|
$carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 |
556
|
|
|
$sum = $carry ? $sum + self::$maxDigit2 : $sum; |
557
|
|
|
|
558
|
|
|
$temp = self::$base === 26 ? intval($sum / 0x4000000) : ($sum >> 31); |
559
|
|
|
|
560
|
|
|
$x_value[$i] = (int) ($sum - self::$baseFull * $temp); |
561
|
|
|
$x_value[$j] = $temp; |
562
|
|
|
} |
563
|
|
|
|
564
|
|
|
if ($j == $y_size) { // ie. if $y_size is odd |
565
|
|
|
$sum = $x_value[$i] - $y_value[$i] - $carry; |
566
|
|
|
$carry = $sum < 0; |
567
|
|
|
$x_value[$i] = $carry ? $sum + self::$baseFull : $sum; |
568
|
|
|
++$i; |
569
|
|
|
} |
570
|
|
|
|
571
|
|
|
if ($carry) { |
572
|
|
|
for (; !$x_value[$i]; ++$i) { |
573
|
|
|
$x_value[$i] = self::$maxDigit; |
574
|
|
|
} |
575
|
|
|
--$x_value[$i]; |
576
|
|
|
} |
577
|
|
|
|
578
|
|
|
return [ |
579
|
|
|
self::VALUE => self::_trim($x_value), |
580
|
|
|
self::SIGN => $x_negative, |
581
|
|
|
]; |
582
|
|
|
} |
583
|
|
|
|
584
|
|
|
/** |
585
|
|
|
* Multiplies two BigIntegers. |
586
|
|
|
* |
587
|
|
|
* Here's an example: |
588
|
|
|
* <code> |
589
|
|
|
* <?php |
590
|
|
|
* $a = new \Jose\Util\ger('10'); |
591
|
|
|
* $b = new \Jose\Util\ger('20'); |
592
|
|
|
* |
593
|
|
|
* $c = $a->multiply($b); |
594
|
|
|
* |
595
|
|
|
* echo $c->toString(); // outputs 200 |
596
|
|
|
* ?> |
597
|
|
|
* </code> |
598
|
|
|
* |
599
|
|
|
* @param \Jose\Util\Integer $x |
600
|
|
|
* |
601
|
|
|
* @return \Jose\Util\BigInteger |
602
|
|
|
*/ |
603
|
|
|
public function multiply(BigInteger $x) |
604
|
|
|
{ |
605
|
|
|
$temp = new static(); |
606
|
|
|
$temp->value = gmp_mul($this->value, $x->value); |
|
|
|
|
607
|
|
|
|
608
|
|
|
return $this->_normalize($temp); |
609
|
|
|
} |
610
|
|
|
|
611
|
|
|
/** |
612
|
|
|
* Performs multiplication. |
613
|
|
|
* |
614
|
|
|
* @param array $x_value |
615
|
|
|
* @param bool $x_negative |
616
|
|
|
* @param array $y_value |
617
|
|
|
* @param bool $y_negative |
618
|
|
|
* |
619
|
|
|
* @return array |
620
|
|
|
*/ |
621
|
|
|
private static function _multiply($x_value, $x_negative, $y_value, $y_negative) |
622
|
|
|
{ |
623
|
|
|
$x_length = count($x_value); |
624
|
|
|
$y_length = count($y_value); |
625
|
|
|
|
626
|
|
|
if (!$x_length || !$y_length) { // a 0 is being multiplied |
627
|
|
|
return [ |
628
|
|
|
self::VALUE => [], |
629
|
|
|
self::SIGN => false, |
630
|
|
|
]; |
631
|
|
|
} |
632
|
|
|
|
633
|
|
|
return [ |
634
|
|
|
self::VALUE => min($x_length, $y_length) < 2 * self::KARATSUBA_CUTOFF ? |
635
|
|
|
self::_trim(self::_regularMultiply($x_value, $y_value)) : |
636
|
|
|
self::_trim(self::_karatsuba($x_value, $y_value)), |
|
|
|
|
637
|
|
|
self::SIGN => $x_negative != $y_negative, |
638
|
|
|
]; |
639
|
|
|
} |
640
|
|
|
|
641
|
|
|
/** |
642
|
|
|
* Performs long multiplication on two BigIntegers. |
643
|
|
|
* |
644
|
|
|
* Modeled after 'multiply' in MutableBigInteger.java. |
645
|
|
|
* |
646
|
|
|
* @param array $x_value |
647
|
|
|
* @param array $y_value |
648
|
|
|
* |
649
|
|
|
* @return array |
650
|
|
|
*/ |
651
|
|
|
private static function _regularMultiply($x_value, $y_value) |
652
|
|
|
{ |
653
|
|
|
$x_length = count($x_value); |
654
|
|
|
$y_length = count($y_value); |
655
|
|
|
|
656
|
|
|
if (!$x_length || !$y_length) { // a 0 is being multiplied |
657
|
|
|
return []; |
658
|
|
|
} |
659
|
|
|
|
660
|
|
|
if ($x_length < $y_length) { |
661
|
|
|
$temp = $x_value; |
662
|
|
|
$x_value = $y_value; |
663
|
|
|
$y_value = $temp; |
664
|
|
|
|
665
|
|
|
$x_length = count($x_value); |
666
|
|
|
$y_length = count($y_value); |
667
|
|
|
} |
668
|
|
|
|
669
|
|
|
$product_value = self::_array_repeat(0, $x_length + $y_length); |
670
|
|
|
|
671
|
|
|
// the following for loop could be removed if the for loop following it |
672
|
|
|
// (the one with nested for loops) initially set $i to 0, but |
673
|
|
|
// doing so would also make the result in one set of unnecessary adds, |
674
|
|
|
// since on the outermost loops first pass, $product->value[$k] is going |
675
|
|
|
// to always be 0 |
676
|
|
|
|
677
|
|
|
$carry = 0; |
678
|
|
|
|
679
|
|
|
for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0 |
680
|
|
|
$temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
681
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
682
|
|
|
$product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
683
|
|
|
} |
684
|
|
|
|
685
|
|
|
$product_value[$j] = $carry; |
686
|
|
|
|
687
|
|
|
// the above for loop is what the previous comment was talking about. the |
688
|
|
|
// following for loop is the "one with nested for loops" |
689
|
|
|
for ($i = 1; $i < $y_length; ++$i) { |
690
|
|
|
$carry = 0; |
691
|
|
|
|
692
|
|
|
for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) { |
693
|
|
|
$temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
694
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
695
|
|
|
$product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
696
|
|
|
} |
697
|
|
|
|
698
|
|
|
$product_value[$k] = $carry; |
699
|
|
|
} |
700
|
|
|
|
701
|
|
|
return $product_value; |
702
|
|
|
} |
703
|
|
|
|
704
|
|
|
/** |
705
|
|
|
* Performs Karatsuba multiplication on two BigIntegers. |
706
|
|
|
* |
707
|
|
|
* See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
708
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}. |
709
|
|
|
* |
710
|
|
|
* @param array $x_value |
711
|
|
|
* @param array $y_value |
712
|
|
|
* |
713
|
|
|
* @return array |
714
|
|
|
*/ |
715
|
|
|
private static function _karatsuba($x_value, $y_value) |
716
|
|
|
{ |
717
|
|
|
$m = min(count($x_value) >> 1, count($y_value) >> 1); |
718
|
|
|
|
719
|
|
|
if ($m < self::KARATSUBA_CUTOFF) { |
720
|
|
|
return self::_regularMultiply($x_value, $y_value); |
721
|
|
|
} |
722
|
|
|
|
723
|
|
|
$x1 = array_slice($x_value, $m); |
724
|
|
|
$x0 = array_slice($x_value, 0, $m); |
725
|
|
|
$y1 = array_slice($y_value, $m); |
726
|
|
|
$y0 = array_slice($y_value, 0, $m); |
727
|
|
|
|
728
|
|
|
$z2 = self::_karatsuba($x1, $y1); |
729
|
|
|
$z0 = self::_karatsuba($x0, $y0); |
730
|
|
|
|
731
|
|
|
$z1 = self::_add($x1, false, $x0, false); |
732
|
|
|
$temp = self::_add($y1, false, $y0, false); |
733
|
|
|
$z1 = self::_karatsuba($z1[self::VALUE], $temp[self::VALUE]); |
|
|
|
|
734
|
|
|
$temp = self::_add($z2, false, $z0, false); |
735
|
|
|
$z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
|
|
|
|
736
|
|
|
|
737
|
|
|
$z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
738
|
|
|
$z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
739
|
|
|
|
740
|
|
|
$xy = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
|
|
|
|
741
|
|
|
$xy = self::_add($xy[self::VALUE], $xy[self::SIGN], $z0, false); |
|
|
|
|
742
|
|
|
|
743
|
|
|
return $xy[self::VALUE]; |
744
|
|
|
} |
745
|
|
|
|
746
|
|
|
/** |
747
|
|
|
* Performs squaring. |
748
|
|
|
* |
749
|
|
|
* @param array $x |
750
|
|
|
* |
751
|
|
|
* @return array |
752
|
|
|
*/ |
753
|
|
|
private static function _square($x = false) |
|
|
|
|
754
|
|
|
{ |
755
|
|
|
return count($x) < 2 * self::KARATSUBA_CUTOFF ? |
756
|
|
|
self::_trim(self::_baseSquare($x)) : |
|
|
|
|
757
|
|
|
self::_trim(self::_karatsubaSquare($x)); |
|
|
|
|
758
|
|
|
} |
759
|
|
|
|
760
|
|
|
/** |
761
|
|
|
* Performs traditional squaring on two BigIntegers. |
762
|
|
|
* |
763
|
|
|
* Squaring can be done faster than multiplying a number by itself can be. See |
764
|
|
|
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} / |
765
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information. |
766
|
|
|
* |
767
|
|
|
* @param array $value |
768
|
|
|
* |
769
|
|
|
* @return array |
770
|
|
|
*/ |
771
|
|
|
private static function _baseSquare($value) |
772
|
|
|
{ |
773
|
|
|
if (empty($value)) { |
774
|
|
|
return []; |
775
|
|
|
} |
776
|
|
|
$square_value = self::_array_repeat(0, 2 * count($value)); |
777
|
|
|
|
778
|
|
|
for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) { |
779
|
|
|
$i2 = $i << 1; |
780
|
|
|
|
781
|
|
|
$temp = $square_value[$i2] + $value[$i] * $value[$i]; |
782
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
783
|
|
|
$square_value[$i2] = (int) ($temp - self::$baseFull * $carry); |
784
|
|
|
|
785
|
|
|
// note how we start from $i+1 instead of 0 as we do in multiplication. |
786
|
|
|
for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) { |
787
|
|
|
$temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry; |
788
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
789
|
|
|
$square_value[$k] = (int) ($temp - self::$baseFull * $carry); |
790
|
|
|
} |
791
|
|
|
|
792
|
|
|
// the following line can yield values larger 2**15. at this point, PHP should switch |
793
|
|
|
// over to floats. |
794
|
|
|
$square_value[$i + $max_index + 1] = $carry; |
795
|
|
|
} |
796
|
|
|
|
797
|
|
|
return $square_value; |
798
|
|
|
} |
799
|
|
|
|
800
|
|
|
/** |
801
|
|
|
* Performs Karatsuba "squaring" on two BigIntegers. |
802
|
|
|
* |
803
|
|
|
* See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and |
804
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}. |
805
|
|
|
* |
806
|
|
|
* @param array $value |
807
|
|
|
* |
808
|
|
|
* @return array |
809
|
|
|
*/ |
810
|
|
|
private static function _karatsubaSquare($value) |
811
|
|
|
{ |
812
|
|
|
$m = count($value) >> 1; |
813
|
|
|
|
814
|
|
|
if ($m < self::KARATSUBA_CUTOFF) { |
815
|
|
|
return self::_baseSquare($value); |
816
|
|
|
} |
817
|
|
|
|
818
|
|
|
$x1 = array_slice($value, $m); |
819
|
|
|
$x0 = array_slice($value, 0, $m); |
820
|
|
|
|
821
|
|
|
$z2 = self::_karatsubaSquare($x1); |
822
|
|
|
$z0 = self::_karatsubaSquare($x0); |
823
|
|
|
|
824
|
|
|
$z1 = self::_add($x1, false, $x0, false); |
825
|
|
|
$z1 = self::_karatsubaSquare($z1[self::VALUE]); |
|
|
|
|
826
|
|
|
$temp = self::_add($z2, false, $z0, false); |
827
|
|
|
$z1 = self::_subtract($z1, false, $temp[self::VALUE], false); |
|
|
|
|
828
|
|
|
|
829
|
|
|
$z2 = array_merge(array_fill(0, 2 * $m, 0), $z2); |
830
|
|
|
$z1[self::VALUE] = array_merge(array_fill(0, $m, 0), $z1[self::VALUE]); |
831
|
|
|
|
832
|
|
|
$xx = self::_add($z2, false, $z1[self::VALUE], $z1[self::SIGN]); |
|
|
|
|
833
|
|
|
$xx = self::_add($xx[self::VALUE], $xx[self::SIGN], $z0, false); |
|
|
|
|
834
|
|
|
|
835
|
|
|
return $xx[self::VALUE]; |
836
|
|
|
} |
837
|
|
|
|
838
|
|
|
/** |
839
|
|
|
* Divides two BigIntegers. |
840
|
|
|
* |
841
|
|
|
* Returns an array whose first element contains the quotient and whose second element contains the |
842
|
|
|
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
843
|
|
|
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
844
|
|
|
* and the divisor (basically, the "common residue" is the first positive modulo). |
845
|
|
|
* |
846
|
|
|
* Here's an example: |
847
|
|
|
* <code> |
848
|
|
|
* <?php |
849
|
|
|
* $a = new \Jose\Util\ger('10'); |
850
|
|
|
* $b = new \Jose\Util\ger('20'); |
851
|
|
|
* |
852
|
|
|
* list($quotient, $remainder) = $a->divide($b); |
853
|
|
|
* |
854
|
|
|
* echo $quotient->toString(); // outputs 0 |
855
|
|
|
* echo "\r\n"; |
856
|
|
|
* echo $remainder->toString(); // outputs 10 |
857
|
|
|
* ?> |
858
|
|
|
* </code> |
859
|
|
|
* |
860
|
|
|
* @param \Jose\Util\Integer $y |
861
|
|
|
* |
862
|
|
|
* @return array |
863
|
|
|
* |
864
|
|
|
*/ |
865
|
|
|
public function divide(BigInteger $y) |
866
|
|
|
{ |
867
|
|
|
$quotient = new static(); |
868
|
|
|
$remainder = new static(); |
869
|
|
|
|
870
|
|
|
list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
871
|
|
|
|
872
|
|
|
if (gmp_sign($remainder->value) < 0) { |
873
|
|
|
$remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
|
|
|
|
874
|
|
|
} |
875
|
|
|
|
876
|
|
|
return [$this->_normalize($quotient), $this->_normalize($remainder)]; |
877
|
|
|
} |
878
|
|
|
|
879
|
|
|
/** |
880
|
|
|
* Divides a BigInteger by a regular integer. |
881
|
|
|
* |
882
|
|
|
* abc / x = a00 / x + b0 / x + c / x |
883
|
|
|
* |
884
|
|
|
* @param array $dividend |
885
|
|
|
* @param array $divisor |
886
|
|
|
* |
887
|
|
|
* @return array |
888
|
|
|
*/ |
889
|
|
|
private static function _divide_digit($dividend, $divisor) |
|
|
|
|
890
|
|
|
{ |
891
|
|
|
$carry = 0; |
892
|
|
|
$result = []; |
893
|
|
|
|
894
|
|
|
for ($i = count($dividend) - 1; $i >= 0; --$i) { |
895
|
|
|
$temp = self::$baseFull * $carry + $dividend[$i]; |
896
|
|
|
$result[$i] = self::_safe_divide($temp, $divisor); |
|
|
|
|
897
|
|
|
$carry = (int) ($temp - $divisor * $result[$i]); |
898
|
|
|
} |
899
|
|
|
|
900
|
|
|
return [$result, $carry]; |
901
|
|
|
} |
902
|
|
|
|
903
|
|
|
/** |
904
|
|
|
* Performs modular exponentiation. |
905
|
|
|
* |
906
|
|
|
* Here's an example: |
907
|
|
|
* <code> |
908
|
|
|
* <?php |
909
|
|
|
* $a = new \Jose\Util\ger('10'); |
910
|
|
|
* $b = new \Jose\Util\ger('20'); |
911
|
|
|
* $c = new \Jose\Util\ger('30'); |
912
|
|
|
* |
913
|
|
|
* $c = $a->modPow($b, $c); |
914
|
|
|
* |
915
|
|
|
* echo $c->toString(); // outputs 10 |
916
|
|
|
* ?> |
917
|
|
|
* </code> |
918
|
|
|
* |
919
|
|
|
* @param \Jose\Util\Integer $e |
920
|
|
|
* @param \Jose\Util\Integer $n |
921
|
|
|
* |
922
|
|
|
* @return \Jose\Util\BigInteger |
923
|
|
|
* |
924
|
|
|
* and although the approach involving repeated squaring does vastly better, it, too, is impractical |
925
|
|
|
* for our purposes. The reason being that division - by far the most complicated and time-consuming |
926
|
|
|
* of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
927
|
|
|
* |
928
|
|
|
* Modular reductions resolve this issue. Although an individual modular reduction takes more time |
929
|
|
|
* then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
930
|
|
|
* |
931
|
|
|
* The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
932
|
|
|
* although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
933
|
|
|
* base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
934
|
|
|
* the product of two odd numbers is odd), but what about when RSA isn't used? |
935
|
|
|
* |
936
|
|
|
* In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
937
|
|
|
* Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
938
|
|
|
* modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
939
|
|
|
* uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
940
|
|
|
* the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
941
|
|
|
* {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
942
|
|
|
*/ |
943
|
|
|
public function modPow(BigInteger $e, BigInteger $n) |
944
|
|
|
{ |
945
|
|
|
$n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs(); |
|
|
|
|
946
|
|
|
|
947
|
|
|
if ($e->compare(new static()) < 0) { |
948
|
|
|
$e = $e->abs(); |
949
|
|
|
|
950
|
|
|
$temp = $this->modInverse($n); |
|
|
|
|
951
|
|
|
if ($temp === false) { |
952
|
|
|
return false; |
|
|
|
|
953
|
|
|
} |
954
|
|
|
|
955
|
|
|
return $this->_normalize($temp->modPow($e, $n)); |
|
|
|
|
956
|
|
|
} |
957
|
|
|
|
958
|
|
|
$temp = new static(); |
959
|
|
|
$temp->value = gmp_powm($this->value, $e->value, $n->value); |
|
|
|
|
960
|
|
|
|
961
|
|
|
return $this->_normalize($temp); |
962
|
|
|
} |
963
|
|
|
|
964
|
|
|
/** |
965
|
|
|
* Performs modular exponentiation. |
966
|
|
|
* |
967
|
|
|
* Alias for modPow(). |
968
|
|
|
* |
969
|
|
|
* @param \Jose\Util\Integer $e |
970
|
|
|
* @param \Jose\Util\Integer $n |
971
|
|
|
* |
972
|
|
|
* @return \Jose\Util\BigInteger |
973
|
|
|
*/ |
974
|
|
|
public function powMod(BigInteger $e, BigInteger $n) |
975
|
|
|
{ |
976
|
|
|
return $this->modPow($e, $n); |
977
|
|
|
} |
978
|
|
|
|
979
|
|
|
/** |
980
|
|
|
* Barrett Modular Reduction. |
981
|
|
|
* |
982
|
|
|
* See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} / |
983
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly, |
984
|
|
|
* so as not to require negative numbers (initially, this script didn't support negative numbers). |
985
|
|
|
* |
986
|
|
|
* Employs "folding", as described at |
987
|
|
|
* {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from |
988
|
|
|
* it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x." |
989
|
|
|
* |
990
|
|
|
* Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that |
991
|
|
|
* usable on account of (1) its not using reasonable radix points as discussed in |
992
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable |
993
|
|
|
* radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that |
994
|
|
|
* (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line |
995
|
|
|
* comments for details. |
996
|
|
|
* |
997
|
|
|
* @param array $n |
998
|
|
|
* @param array $m |
999
|
|
|
* |
1000
|
|
|
* @return array |
1001
|
|
|
*/ |
1002
|
|
|
private static function _barrett($n, $m) |
|
|
|
|
1003
|
|
|
{ |
1004
|
|
|
static $cache = [ |
1005
|
|
|
self::VARIABLE => [], |
1006
|
|
|
self::DATA => [], |
1007
|
|
|
]; |
1008
|
|
|
|
1009
|
|
|
$m_length = count($m); |
1010
|
|
|
|
1011
|
|
|
// if (self::_compare($n, self::_square($m)) >= 0) { |
1012
|
|
|
if (count($n) > 2 * $m_length) { |
1013
|
|
|
$lhs = new static(); |
1014
|
|
|
$rhs = new static(); |
1015
|
|
|
$lhs->value = $n; |
1016
|
|
|
$rhs->value = $m; |
1017
|
|
|
list(, $temp) = $lhs->divide($rhs); |
1018
|
|
|
|
1019
|
|
|
return $temp->value; |
1020
|
|
|
} |
1021
|
|
|
|
1022
|
|
|
// if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced |
1023
|
|
|
if ($m_length < 5) { |
1024
|
|
|
return self::_regularBarrett($n, $m); |
1025
|
|
|
} |
1026
|
|
|
|
1027
|
|
|
// n = 2 * m.length |
1028
|
|
|
|
1029
|
|
|
if (($key = array_search($m, $cache[self::VARIABLE])) === false) { |
1030
|
|
|
$key = count($cache[self::VARIABLE]); |
|
|
|
|
1031
|
|
|
$cache[self::VARIABLE][] = $m; |
1032
|
|
|
|
1033
|
|
|
$lhs = new static(); |
1034
|
|
|
$lhs_value = &$lhs->value; |
1035
|
|
|
$lhs_value = self::_array_repeat(0, $m_length + ($m_length >> 1)); |
1036
|
|
|
$lhs_value[] = 1; |
1037
|
|
|
$rhs = new static(); |
1038
|
|
|
$rhs->value = $m; |
1039
|
|
|
|
1040
|
|
|
list($u, $m1) = $lhs->divide($rhs); |
1041
|
|
|
$u = $u->value; |
1042
|
|
|
$m1 = $m1->value; |
1043
|
|
|
|
1044
|
|
|
$cache[self::DATA][] = [ |
1045
|
|
|
'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1) |
1046
|
|
|
'm1' => $m1, // m.length |
1047
|
|
|
]; |
1048
|
|
|
} else { |
1049
|
|
|
extract($cache[self::DATA][$key]); |
1050
|
|
|
} |
1051
|
|
|
|
1052
|
|
|
$cutoff = $m_length + ($m_length >> 1); |
1053
|
|
|
$lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1) |
1054
|
|
|
$msd = array_slice($n, $cutoff); // m.length >> 1 |
1055
|
|
|
$lsd = self::_trim($lsd); |
1056
|
|
|
$temp = self::_multiply($msd, false, $m1, false); |
1057
|
|
|
$n = self::_add($lsd, false, $temp[self::VALUE], false); // m.length + (m.length >> 1) + 1 |
|
|
|
|
1058
|
|
|
|
1059
|
|
|
if ($m_length & 1) { |
1060
|
|
|
return self::_regularBarrett($n[self::VALUE], $m); |
|
|
|
|
1061
|
|
|
} |
1062
|
|
|
|
1063
|
|
|
// (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2 |
1064
|
|
|
$temp = array_slice($n[self::VALUE], $m_length - 1); |
1065
|
|
|
// if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2 |
1066
|
|
|
// if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1 |
1067
|
|
|
$temp = self::_multiply($temp, false, $u, false); |
1068
|
|
|
// if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1 |
1069
|
|
|
// if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) |
1070
|
|
|
$temp = array_slice($temp[self::VALUE], ($m_length >> 1) + 1); |
1071
|
|
|
// if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1 |
1072
|
|
|
// if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1) |
1073
|
|
|
$temp = self::_multiply($temp, false, $m, false); |
1074
|
|
|
|
1075
|
|
|
// at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit |
1076
|
|
|
// number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop |
1077
|
|
|
// following this comment would loop a lot (hence our calling _regularBarrett() in that situation). |
1078
|
|
|
|
1079
|
|
|
$result = self::_subtract($n[self::VALUE], false, $temp[self::VALUE], false); |
|
|
|
|
1080
|
|
|
|
1081
|
|
|
while (self::_compare($result[self::VALUE], $result[self::SIGN], $m, false) >= 0) { |
|
|
|
|
1082
|
|
|
$result = self::_subtract($result[self::VALUE], $result[self::SIGN], $m, false); |
|
|
|
|
1083
|
|
|
} |
1084
|
|
|
|
1085
|
|
|
return $result[self::VALUE]; |
1086
|
|
|
} |
1087
|
|
|
|
1088
|
|
|
/** |
1089
|
|
|
* (Regular) Barrett Modular Reduction. |
1090
|
|
|
* |
1091
|
|
|
* For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this |
1092
|
|
|
* is that this function does not fold the denominator into a smaller form. |
1093
|
|
|
* |
1094
|
|
|
* @param array $x |
1095
|
|
|
* @param array $n |
1096
|
|
|
* |
1097
|
|
|
* @return array |
1098
|
|
|
*/ |
1099
|
|
|
private static function _regularBarrett($x, $n) |
1100
|
|
|
{ |
1101
|
|
|
static $cache = [ |
1102
|
|
|
self::VARIABLE => [], |
1103
|
|
|
self::DATA => [], |
1104
|
|
|
]; |
1105
|
|
|
|
1106
|
|
|
$n_length = count($n); |
1107
|
|
|
|
1108
|
|
|
if (count($x) > 2 * $n_length) { |
1109
|
|
|
$lhs = new static(); |
1110
|
|
|
$rhs = new static(); |
1111
|
|
|
$lhs->value = $x; |
1112
|
|
|
$rhs->value = $n; |
1113
|
|
|
list(, $temp) = $lhs->divide($rhs); |
1114
|
|
|
|
1115
|
|
|
return $temp->value; |
1116
|
|
|
} |
1117
|
|
|
|
1118
|
|
|
if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
1119
|
|
|
$key = count($cache[self::VARIABLE]); |
1120
|
|
|
$cache[self::VARIABLE][] = $n; |
1121
|
|
|
$lhs = new static(); |
1122
|
|
|
$lhs_value = &$lhs->value; |
1123
|
|
|
$lhs_value = self::_array_repeat(0, 2 * $n_length); |
1124
|
|
|
$lhs_value[] = 1; |
1125
|
|
|
$rhs = new static(); |
1126
|
|
|
$rhs->value = $n; |
1127
|
|
|
list($temp) = $lhs->divide($rhs); // m.length |
1128
|
|
|
$cache[self::DATA][] = $temp->value; |
1129
|
|
|
} |
1130
|
|
|
|
1131
|
|
|
// 2 * m.length - (m.length - 1) = m.length + 1 |
1132
|
|
|
$temp = array_slice($x, $n_length - 1); |
1133
|
|
|
// (m.length + 1) + m.length = 2 * m.length + 1 |
1134
|
|
|
$temp = self::_multiply($temp, false, $cache[self::DATA][$key], false); |
1135
|
|
|
// (2 * m.length + 1) - (m.length - 1) = m.length + 2 |
1136
|
|
|
$temp = array_slice($temp[self::VALUE], $n_length + 1); |
1137
|
|
|
|
1138
|
|
|
// m.length + 1 |
1139
|
|
|
$result = array_slice($x, 0, $n_length + 1); |
1140
|
|
|
// m.length + 1 |
1141
|
|
|
$temp = self::_multiplyLower($temp, false, $n, false, $n_length + 1); |
1142
|
|
|
// $temp == array_slice(self::_multiply($temp, false, $n, false)->value, 0, $n_length + 1) |
1143
|
|
|
|
1144
|
|
|
if (self::_compare($result, false, $temp[self::VALUE], $temp[self::SIGN]) < 0) { |
|
|
|
|
1145
|
|
|
$corrector_value = self::_array_repeat(0, $n_length + 1); |
1146
|
|
|
$corrector_value[count($corrector_value)] = 1; |
1147
|
|
|
$result = self::_add($result, false, $corrector_value, false); |
1148
|
|
|
$result = $result[self::VALUE]; |
1149
|
|
|
} |
1150
|
|
|
|
1151
|
|
|
// at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits |
1152
|
|
|
$result = self::_subtract($result, false, $temp[self::VALUE], $temp[self::SIGN]); |
|
|
|
|
1153
|
|
|
while (self::_compare($result[self::VALUE], $result[self::SIGN], $n, false) > 0) { |
|
|
|
|
1154
|
|
|
$result = self::_subtract($result[self::VALUE], $result[self::SIGN], $n, false); |
|
|
|
|
1155
|
|
|
} |
1156
|
|
|
|
1157
|
|
|
return $result[self::VALUE]; |
1158
|
|
|
} |
1159
|
|
|
|
1160
|
|
|
/** |
1161
|
|
|
* Performs long multiplication up to $stop digits. |
1162
|
|
|
* |
1163
|
|
|
* If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved. |
1164
|
|
|
* |
1165
|
|
|
* @param array $x_value |
1166
|
|
|
* @param bool $x_negative |
1167
|
|
|
* @param array $y_value |
1168
|
|
|
* @param bool $y_negative |
1169
|
|
|
* @param int $stop |
1170
|
|
|
* |
1171
|
|
|
* @return array |
1172
|
|
|
*/ |
1173
|
|
|
private static function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop) |
1174
|
|
|
{ |
1175
|
|
|
$x_length = count($x_value); |
1176
|
|
|
$y_length = count($y_value); |
1177
|
|
|
|
1178
|
|
|
if (!$x_length || !$y_length) { // a 0 is being multiplied |
1179
|
|
|
return [ |
1180
|
|
|
self::VALUE => [], |
1181
|
|
|
self::SIGN => false, |
1182
|
|
|
]; |
1183
|
|
|
} |
1184
|
|
|
|
1185
|
|
|
if ($x_length < $y_length) { |
1186
|
|
|
$temp = $x_value; |
1187
|
|
|
$x_value = $y_value; |
1188
|
|
|
$y_value = $temp; |
1189
|
|
|
|
1190
|
|
|
$x_length = count($x_value); |
1191
|
|
|
$y_length = count($y_value); |
1192
|
|
|
} |
1193
|
|
|
|
1194
|
|
|
$product_value = self::_array_repeat(0, $x_length + $y_length); |
1195
|
|
|
|
1196
|
|
|
// the following for loop could be removed if the for loop following it |
1197
|
|
|
// (the one with nested for loops) initially set $i to 0, but |
1198
|
|
|
// doing so would also make the result in one set of unnecessary adds, |
1199
|
|
|
// since on the outermost loops first pass, $product->value[$k] is going |
1200
|
|
|
// to always be 0 |
1201
|
|
|
|
1202
|
|
|
$carry = 0; |
1203
|
|
|
|
1204
|
|
|
for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i |
1205
|
|
|
$temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0 |
1206
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
1207
|
|
|
$product_value[$j] = (int) ($temp - self::$baseFull * $carry); |
1208
|
|
|
} |
1209
|
|
|
|
1210
|
|
|
if ($j < $stop) { |
1211
|
|
|
$product_value[$j] = $carry; |
1212
|
|
|
} |
1213
|
|
|
|
1214
|
|
|
// the above for loop is what the previous comment was talking about. the |
1215
|
|
|
// following for loop is the "one with nested for loops" |
1216
|
|
|
|
1217
|
|
|
for ($i = 1; $i < $y_length; ++$i) { |
1218
|
|
|
$carry = 0; |
1219
|
|
|
|
1220
|
|
|
for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) { |
1221
|
|
|
$temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry; |
1222
|
|
|
$carry = self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31); |
1223
|
|
|
$product_value[$k] = (int) ($temp - self::$baseFull * $carry); |
1224
|
|
|
} |
1225
|
|
|
|
1226
|
|
|
if ($k < $stop) { |
1227
|
|
|
$product_value[$k] = $carry; |
1228
|
|
|
} |
1229
|
|
|
} |
1230
|
|
|
|
1231
|
|
|
return [ |
1232
|
|
|
self::VALUE => self::_trim($product_value), |
1233
|
|
|
self::SIGN => $x_negative != $y_negative, |
1234
|
|
|
]; |
1235
|
|
|
} |
1236
|
|
|
|
1237
|
|
|
/** |
1238
|
|
|
* Montgomery Modular Reduction. |
1239
|
|
|
* |
1240
|
|
|
* ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n. |
1241
|
|
|
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be |
1242
|
|
|
* improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function |
1243
|
|
|
* to work correctly. |
1244
|
|
|
* |
1245
|
|
|
* @param array $x |
1246
|
|
|
* @param array $n |
1247
|
|
|
* |
1248
|
|
|
* @return array |
1249
|
|
|
*/ |
1250
|
|
|
private static function _montgomery($x, $n) |
|
|
|
|
1251
|
|
|
{ |
1252
|
|
|
static $cache = [ |
1253
|
|
|
self::VARIABLE => [], |
1254
|
|
|
self::DATA => [], |
1255
|
|
|
]; |
1256
|
|
|
|
1257
|
|
|
if (($key = array_search($n, $cache[self::VARIABLE])) === false) { |
1258
|
|
|
$key = count($cache[self::VARIABLE]); |
1259
|
|
|
$cache[self::VARIABLE][] = $x; |
1260
|
|
|
$cache[self::DATA][] = self::_modInverse67108864($n); |
1261
|
|
|
} |
1262
|
|
|
|
1263
|
|
|
$k = count($n); |
1264
|
|
|
|
1265
|
|
|
$result = [self::VALUE => $x]; |
1266
|
|
|
|
1267
|
|
|
for ($i = 0; $i < $k; ++$i) { |
1268
|
|
|
$temp = $result[self::VALUE][$i] * $cache[self::DATA][$key]; |
1269
|
|
|
$temp = $temp - self::$baseFull * (self::$base === 26 ? intval($temp / 0x4000000) : ($temp >> 31)); |
1270
|
|
|
$temp = self::_regularMultiply([$temp], $n); |
1271
|
|
|
$temp = array_merge($this->_array_repeat(0, $i), $temp); |
|
|
|
|
1272
|
|
|
$result = self::_add($result[self::VALUE], false, $temp, false); |
|
|
|
|
1273
|
|
|
} |
1274
|
|
|
|
1275
|
|
|
$result[self::VALUE] = array_slice($result[self::VALUE], $k); |
1276
|
|
|
|
1277
|
|
|
if (self::_compare($result, false, $n, false) >= 0) { |
1278
|
|
|
$result = self::_subtract($result[self::VALUE], false, $n, false); |
|
|
|
|
1279
|
|
|
} |
1280
|
|
|
|
1281
|
|
|
return $result[self::VALUE]; |
1282
|
|
|
} |
1283
|
|
|
|
1284
|
|
|
/** |
1285
|
|
|
* Modular Inverse of a number mod 2**26 (eg. 67108864). |
1286
|
|
|
* |
1287
|
|
|
* Based off of the bnpInvDigit function implemented and justified in the following URL: |
1288
|
|
|
* |
1289
|
|
|
* {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js} |
1290
|
|
|
* |
1291
|
|
|
* The following URL provides more info: |
1292
|
|
|
* |
1293
|
|
|
* {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85} |
1294
|
|
|
* |
1295
|
|
|
* As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For |
1296
|
|
|
* instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields |
1297
|
|
|
* int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't |
1298
|
|
|
* auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that |
1299
|
|
|
* the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the |
1300
|
|
|
* maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to |
1301
|
|
|
* 40 bits, which only 64-bit floating points will support. |
1302
|
|
|
* |
1303
|
|
|
* Thanks to Pedro Gimeno Fortea for input! |
1304
|
|
|
* |
1305
|
|
|
* @param array $x |
1306
|
|
|
* |
1307
|
|
|
* @return int |
1308
|
|
|
*/ |
1309
|
|
|
private function _modInverse67108864($x) // 2**26 == 67,108,864 |
1310
|
|
|
{ |
1311
|
|
|
$x = -$x[0]; |
1312
|
|
|
$result = $x & 0x3; // x**-1 mod 2**2 |
1313
|
|
|
$result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4 |
1314
|
|
|
$result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8 |
1315
|
|
|
$result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16 |
1316
|
|
|
$result = fmod($result * (2 - fmod($x * $result, self::$baseFull)), self::$baseFull); // x**-1 mod 2**26 |
1317
|
|
|
return $result & self::$maxDigit; |
1318
|
|
|
} |
1319
|
|
|
|
1320
|
|
|
/** |
1321
|
|
|
* Calculates modular inverses. |
1322
|
|
|
* |
1323
|
|
|
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
1324
|
|
|
* |
1325
|
|
|
* Here's an example: |
1326
|
|
|
* <code> |
1327
|
|
|
* <?php |
1328
|
|
|
* $a = new \Jose\Util\teger(30); |
1329
|
|
|
* $b = new \Jose\Util\teger(17); |
1330
|
|
|
* |
1331
|
|
|
* $c = $a->modInverse($b); |
1332
|
|
|
* echo $c->toString(); // outputs 4 |
1333
|
|
|
* |
1334
|
|
|
* echo "\r\n"; |
1335
|
|
|
* |
1336
|
|
|
* $d = $a->multiply($c); |
1337
|
|
|
* list(, $d) = $d->divide($b); |
1338
|
|
|
* echo $d; // outputs 1 (as per the definition of modular inverse) |
1339
|
|
|
* ?> |
1340
|
|
|
* </code> |
1341
|
|
|
* |
1342
|
|
|
* @param \Jose\Util\Integer $n |
1343
|
|
|
* |
1344
|
|
|
* @return \Jose\Util\eger|false |
1345
|
|
|
* |
1346
|
|
|
*/ |
1347
|
|
|
public function modInverse(BigInteger $n) |
1348
|
|
|
{ |
1349
|
|
|
$temp = new static(); |
1350
|
|
|
$temp->value = gmp_invert($this->value, $n->value); |
|
|
|
|
1351
|
|
|
|
1352
|
|
|
return ($temp->value === false) ? false : $this->_normalize($temp); |
1353
|
|
|
} |
1354
|
|
|
|
1355
|
|
|
/** |
1356
|
|
|
* Calculates the greatest common divisor and Bezout's identity. |
1357
|
|
|
* |
1358
|
|
|
* Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that |
1359
|
|
|
* 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which |
1360
|
|
|
* combination is returned is dependant upon which mode is in use. See |
1361
|
|
|
* {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. |
1362
|
|
|
* |
1363
|
|
|
* Here's an example: |
1364
|
|
|
* <code> |
1365
|
|
|
* <?php |
1366
|
|
|
* $a = new \Jose\Util\eger(693); |
1367
|
|
|
* $b = new \Jose\Util\eger(609); |
1368
|
|
|
* |
1369
|
|
|
* extract($a->extendedGCD($b)); |
1370
|
|
|
* |
1371
|
|
|
* echo $gcd->toString() . "\r\n"; // outputs 21 |
1372
|
|
|
* echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21 |
1373
|
|
|
* ?> |
1374
|
|
|
* </code> |
1375
|
|
|
* |
1376
|
|
|
* @param \Jose\Util\Integer $n |
1377
|
|
|
* |
1378
|
|
|
* @return \Jose\Util\BigInteger |
1379
|
|
|
* |
1380
|
|
|
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, |
1381
|
|
|
* the more traditional algorithim requires "relatively costly multiple-precision divisions". |
1382
|
|
|
*/ |
1383
|
|
|
public function extendedGCD(BigInteger $n) |
1384
|
|
|
{ |
1385
|
|
|
extract(gmp_gcdext($this->value, $n->value)); |
|
|
|
|
1386
|
|
|
|
1387
|
|
|
return [ |
1388
|
|
|
'gcd' => $this->_normalize(new static($g)), |
1389
|
|
|
'x' => $this->_normalize(new static($s)), |
1390
|
|
|
'y' => $this->_normalize(new static($t)), |
1391
|
|
|
]; |
1392
|
|
|
} |
1393
|
|
|
|
1394
|
|
|
/** |
1395
|
|
|
* Calculates the greatest common divisor. |
1396
|
|
|
* |
1397
|
|
|
* Say you have 693 and 609. The GCD is 21. |
1398
|
|
|
* |
1399
|
|
|
* Here's an example: |
1400
|
|
|
* <code> |
1401
|
|
|
* <?php |
1402
|
|
|
* $a = new \Jose\Util\eger(693); |
1403
|
|
|
* $b = new \Jose\Util\eger(609); |
1404
|
|
|
* |
1405
|
|
|
* $gcd = a->extendedGCD($b); |
1406
|
|
|
* |
1407
|
|
|
* echo $gcd->toString() . "\r\n"; // outputs 21 |
1408
|
|
|
* ?> |
1409
|
|
|
* </code> |
1410
|
|
|
* |
1411
|
|
|
* @param \Jose\Util\Integer $n |
1412
|
|
|
* |
1413
|
|
|
* @return \Jose\Util\BigInteger |
1414
|
|
|
*/ |
1415
|
|
|
public function gcd(BigInteger $n) |
1416
|
|
|
{ |
1417
|
|
|
extract($this->extendedGCD($n)); |
|
|
|
|
1418
|
|
|
|
1419
|
|
|
return $gcd; |
1420
|
|
|
} |
1421
|
|
|
|
1422
|
|
|
/** |
1423
|
|
|
* Absolute value. |
1424
|
|
|
* |
1425
|
|
|
* @return \Jose\Util\BigInteger |
1426
|
|
|
*/ |
1427
|
|
|
public function abs() |
1428
|
|
|
{ |
1429
|
|
|
$temp = new static(); |
1430
|
|
|
|
1431
|
|
|
$temp->value = gmp_abs($this->value); |
|
|
|
|
1432
|
|
|
|
1433
|
|
|
return $temp; |
1434
|
|
|
} |
1435
|
|
|
|
1436
|
|
|
/** |
1437
|
|
|
* Compares two numbers. |
1438
|
|
|
* |
1439
|
|
|
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
1440
|
|
|
* demonstrated thusly: |
1441
|
|
|
* |
1442
|
|
|
* $x > $y: $x->compare($y) > 0 |
1443
|
|
|
* $x < $y: $x->compare($y) < 0 |
1444
|
|
|
* $x == $y: $x->compare($y) == 0 |
1445
|
|
|
* |
1446
|
|
|
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
1447
|
|
|
* |
1448
|
|
|
* @param \Jose\Util\Integer $y |
1449
|
|
|
* |
1450
|
|
|
* @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
1451
|
|
|
* |
1452
|
|
|
*/ |
1453
|
|
|
public function compare(BigInteger $y) |
1454
|
|
|
{ |
1455
|
|
|
return gmp_cmp($this->value, $y->value); |
1456
|
|
|
} |
1457
|
|
|
|
1458
|
|
|
/** |
1459
|
|
|
* Compares two numbers. |
1460
|
|
|
* |
1461
|
|
|
* @param array $x_value |
1462
|
|
|
* @param bool $x_negative |
1463
|
|
|
* @param array $y_value |
1464
|
|
|
* @param bool $y_negative |
1465
|
|
|
* |
1466
|
|
|
* @return int |
1467
|
|
|
*/ |
1468
|
|
|
private static function _compare($x_value, $x_negative, $y_value, $y_negative) |
1469
|
|
|
{ |
1470
|
|
|
if ($x_negative != $y_negative) { |
1471
|
|
|
return (!$x_negative && $y_negative) ? 1 : -1; |
1472
|
|
|
} |
1473
|
|
|
|
1474
|
|
|
$result = $x_negative ? -1 : 1; |
1475
|
|
|
|
1476
|
|
|
if (count($x_value) != count($y_value)) { |
1477
|
|
|
return (count($x_value) > count($y_value)) ? $result : -$result; |
1478
|
|
|
} |
1479
|
|
|
$size = max(count($x_value), count($y_value)); |
1480
|
|
|
|
1481
|
|
|
$x_value = array_pad($x_value, $size, 0); |
1482
|
|
|
$y_value = array_pad($y_value, $size, 0); |
1483
|
|
|
|
1484
|
|
|
for ($i = count($x_value) - 1; $i >= 0; --$i) { |
1485
|
|
|
if ($x_value[$i] != $y_value[$i]) { |
1486
|
|
|
return ($x_value[$i] > $y_value[$i]) ? $result : -$result; |
1487
|
|
|
} |
1488
|
|
|
} |
1489
|
|
|
|
1490
|
|
|
return 0; |
1491
|
|
|
} |
1492
|
|
|
|
1493
|
|
|
/** |
1494
|
|
|
* Tests the equality of two numbers. |
1495
|
|
|
* |
1496
|
|
|
* If you need to see if one number is greater than or less than another number, use BigInteger::compare() |
1497
|
|
|
* |
1498
|
|
|
* @param \Jose\Util\Integer $x |
1499
|
|
|
* |
1500
|
|
|
* @return bool |
1501
|
|
|
*/ |
1502
|
|
|
public function equals(BigInteger $x) |
1503
|
|
|
{ |
1504
|
|
|
return gmp_cmp($this->value, $x->value) == 0; |
1505
|
|
|
} |
1506
|
|
|
|
1507
|
|
|
/** |
1508
|
|
|
* Set Precision. |
1509
|
|
|
* |
1510
|
|
|
* Some bitwise operations give different results depending on the precision being used. Examples include left |
1511
|
|
|
* shift, not, and rotates. |
1512
|
|
|
* |
1513
|
|
|
* @param int $bits |
1514
|
|
|
*/ |
1515
|
|
|
public function setPrecision($bits) |
1516
|
|
|
{ |
1517
|
|
|
if ($bits < 1) { |
1518
|
|
|
$this->precision = -1; |
1519
|
|
|
$this->bitmask = false; |
1520
|
|
|
|
1521
|
|
|
return; |
1522
|
|
|
} |
1523
|
|
|
$this->precision = $bits; |
1524
|
|
|
if (MATH_BIGINTEGER_MODE != self::MODE_BCMATH) { |
1525
|
|
|
$this->bitmask = new static(chr((1 << ($bits & 0x7)) - 1).str_repeat(chr(0xFF), $bits >> 3), 256); |
|
|
|
|
1526
|
|
|
} else { |
1527
|
|
|
$this->bitmask = new static(bcpow('2', $bits, 0)); |
|
|
|
|
1528
|
|
|
} |
1529
|
|
|
|
1530
|
|
|
$temp = $this->_normalize($this); |
1531
|
|
|
$this->value = $temp->value; |
1532
|
|
|
} |
1533
|
|
|
|
1534
|
|
|
/** |
1535
|
|
|
* Get Precision. |
1536
|
|
|
* |
1537
|
|
|
* @return int |
1538
|
|
|
*/ |
1539
|
|
|
public function getPrecision() |
1540
|
|
|
{ |
1541
|
|
|
return $this->precision; |
1542
|
|
|
} |
1543
|
|
|
|
1544
|
|
|
/** |
1545
|
|
|
* Logical And. |
1546
|
|
|
* |
1547
|
|
|
* @param \Jose\Util\Integer $x |
1548
|
|
|
* |
1549
|
|
|
* |
1550
|
|
|
* @return \Jose\Util\BigInteger |
1551
|
|
|
*/ |
1552
|
|
|
public function bitwise_and(BigInteger $x) |
1553
|
|
|
{ |
1554
|
|
|
$temp = new static(); |
1555
|
|
|
$temp->value = gmp_and($this->value, $x->value); |
|
|
|
|
1556
|
|
|
|
1557
|
|
|
return $this->_normalize($temp); |
1558
|
|
|
} |
1559
|
|
|
|
1560
|
|
|
/** |
1561
|
|
|
* Logical Or. |
1562
|
|
|
* |
1563
|
|
|
* @param \Jose\Util\Integer $x |
1564
|
|
|
* |
1565
|
|
|
* |
1566
|
|
|
* @return \Jose\Util\BigInteger |
1567
|
|
|
*/ |
1568
|
|
|
public function bitwise_or(BigInteger $x) |
1569
|
|
|
{ |
1570
|
|
|
$temp = new static(); |
1571
|
|
|
$temp->value = gmp_or($this->value, $x->value); |
|
|
|
|
1572
|
|
|
|
1573
|
|
|
return $this->_normalize($temp); |
1574
|
|
|
} |
1575
|
|
|
|
1576
|
|
|
/** |
1577
|
|
|
* Logical Exclusive-Or. |
1578
|
|
|
* |
1579
|
|
|
* @param \Jose\Util\Integer $x |
1580
|
|
|
* |
1581
|
|
|
* |
1582
|
|
|
* @return \Jose\Util\BigInteger |
1583
|
|
|
*/ |
1584
|
|
|
public function bitwise_xor(BigInteger $x) |
1585
|
|
|
{ |
1586
|
|
|
$temp = new static(); |
1587
|
|
|
$temp->value = gmp_xor($this->value, $x->value); |
|
|
|
|
1588
|
|
|
|
1589
|
|
|
return $this->_normalize($temp); |
1590
|
|
|
} |
1591
|
|
|
|
1592
|
|
|
/** |
1593
|
|
|
* Logical Not. |
1594
|
|
|
* |
1595
|
|
|
* |
1596
|
|
|
* @return \Jose\Util\BigInteger |
1597
|
|
|
*/ |
1598
|
|
|
public function bitwise_not() |
1599
|
|
|
{ |
1600
|
|
|
// calculuate "not" without regard to $this->precision |
1601
|
|
|
// (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0) |
1602
|
|
|
$temp = $this->toBytes(); |
1603
|
|
|
if ($temp == '') { |
1604
|
|
|
return ''; |
|
|
|
|
1605
|
|
|
} |
1606
|
|
|
$pre_msb = decbin(ord($temp[0])); |
1607
|
|
|
$temp = ~$temp; |
1608
|
|
|
$msb = decbin(ord($temp[0])); |
1609
|
|
|
if (strlen($msb) == 8) { |
1610
|
|
|
$msb = substr($msb, strpos($msb, '0')); |
1611
|
|
|
} |
1612
|
|
|
$temp[0] = chr(bindec($msb)); |
1613
|
|
|
|
1614
|
|
|
// see if we need to add extra leading 1's |
1615
|
|
|
$current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8; |
1616
|
|
|
$new_bits = $this->precision - $current_bits; |
1617
|
|
|
if ($new_bits <= 0) { |
1618
|
|
|
return $this->_normalize(new static($temp, 256)); |
1619
|
|
|
} |
1620
|
|
|
|
1621
|
|
|
// generate as many leading 1's as we need to. |
1622
|
|
|
$leading_ones = chr((1 << ($new_bits & 0x7)) - 1).str_repeat(chr(0xFF), $new_bits >> 3); |
1623
|
|
|
|
1624
|
|
|
self::_base256_lshift($leading_ones, $current_bits); |
1625
|
|
|
|
1626
|
|
|
$temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT); |
1627
|
|
|
|
1628
|
|
|
return $this->_normalize(new static($leading_ones | $temp, 256)); |
1629
|
|
|
} |
1630
|
|
|
|
1631
|
|
|
/** |
1632
|
|
|
* Logical Right Shift. |
1633
|
|
|
* |
1634
|
|
|
* Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. |
1635
|
|
|
* |
1636
|
|
|
* @param int $shift |
1637
|
|
|
* |
1638
|
|
|
* @return \Jose\Util\BigInteger |
1639
|
|
|
* |
1640
|
|
|
*/ |
1641
|
|
|
public function bitwise_rightShift($shift) |
1642
|
|
|
{ |
1643
|
|
|
$temp = new static(); |
1644
|
|
|
|
1645
|
|
|
static $two; |
1646
|
|
|
|
1647
|
|
|
if (!isset($two)) { |
1648
|
|
|
$two = gmp_init('2'); |
1649
|
|
|
} |
1650
|
|
|
|
1651
|
|
|
$temp->value = gmp_div_q($this->value, gmp_pow($two, $shift)); |
|
|
|
|
1652
|
|
|
|
1653
|
|
|
return $this->_normalize($temp); |
1654
|
|
|
} |
1655
|
|
|
|
1656
|
|
|
/** |
1657
|
|
|
* Logical Left Shift. |
1658
|
|
|
* |
1659
|
|
|
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
1660
|
|
|
* |
1661
|
|
|
* @param int $shift |
1662
|
|
|
* |
1663
|
|
|
* @return \Jose\Util\BigInteger |
1664
|
|
|
* |
1665
|
|
|
*/ |
1666
|
|
|
public function bitwise_leftShift($shift) |
1667
|
|
|
{ |
1668
|
|
|
$temp = new static(); |
1669
|
|
|
|
1670
|
|
|
static $two; |
1671
|
|
|
|
1672
|
|
|
if (!isset($two)) { |
1673
|
|
|
$two = gmp_init('2'); |
1674
|
|
|
} |
1675
|
|
|
|
1676
|
|
|
$temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
|
|
|
|
1677
|
|
|
|
1678
|
|
|
return $this->_normalize($temp); |
1679
|
|
|
} |
1680
|
|
|
|
1681
|
|
|
/** |
1682
|
|
|
* Logical Left Rotate. |
1683
|
|
|
* |
1684
|
|
|
* Instead of the top x bits being dropped they're appended to the shifted bit string. |
1685
|
|
|
* |
1686
|
|
|
* @param int $shift |
1687
|
|
|
* |
1688
|
|
|
* @return \Jose\Util\BigInteger |
1689
|
|
|
*/ |
1690
|
|
|
public function bitwise_leftRotate($shift) |
1691
|
|
|
{ |
1692
|
|
|
$bits = $this->toBytes(); |
1693
|
|
|
|
1694
|
|
|
if ($this->precision > 0) { |
1695
|
|
|
$precision = $this->precision; |
1696
|
|
|
if (MATH_BIGINTEGER_MODE == self::MODE_BCMATH) { |
1697
|
|
|
$mask = $this->bitmask->subtract(new static(1)); |
|
|
|
|
1698
|
|
|
$mask = $mask->toBytes(); |
1699
|
|
|
} else { |
1700
|
|
|
$mask = $this->bitmask->toBytes(); |
|
|
|
|
1701
|
|
|
} |
1702
|
|
|
} else { |
1703
|
|
|
$temp = ord($bits[0]); |
1704
|
|
|
for ($i = 0; $temp >> $i; ++$i) { |
|
|
|
|
1705
|
|
|
} |
1706
|
|
|
$precision = 8 * strlen($bits) - 8 + $i; |
1707
|
|
|
$mask = chr((1 << ($precision & 0x7)) - 1).str_repeat(chr(0xFF), $precision >> 3); |
1708
|
|
|
} |
1709
|
|
|
|
1710
|
|
|
if ($shift < 0) { |
1711
|
|
|
$shift += $precision; |
1712
|
|
|
} |
1713
|
|
|
$shift %= $precision; |
1714
|
|
|
|
1715
|
|
|
if (!$shift) { |
1716
|
|
|
return clone $this; |
1717
|
|
|
} |
1718
|
|
|
|
1719
|
|
|
$left = $this->bitwise_leftShift($shift); |
1720
|
|
|
$left = $left->bitwise_and(new static($mask, 256)); |
1721
|
|
|
$right = $this->bitwise_rightShift($precision - $shift); |
1722
|
|
|
$result = MATH_BIGINTEGER_MODE != self::MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right); |
1723
|
|
|
|
1724
|
|
|
return $this->_normalize($result); |
1725
|
|
|
} |
1726
|
|
|
|
1727
|
|
|
/** |
1728
|
|
|
* Logical Right Rotate. |
1729
|
|
|
* |
1730
|
|
|
* Instead of the bottom x bits being dropped they're prepended to the shifted bit string. |
1731
|
|
|
* |
1732
|
|
|
* @param int $shift |
1733
|
|
|
* |
1734
|
|
|
* @return \Jose\Util\BigInteger |
1735
|
|
|
*/ |
1736
|
|
|
public function bitwise_rightRotate($shift) |
1737
|
|
|
{ |
1738
|
|
|
return $this->bitwise_leftRotate(-$shift); |
1739
|
|
|
} |
1740
|
|
|
|
1741
|
|
|
/** |
1742
|
|
|
* Generates a random BigInteger. |
1743
|
|
|
* |
1744
|
|
|
* Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
1745
|
|
|
* |
1746
|
|
|
* @param int $length |
|
|
|
|
1747
|
|
|
* |
1748
|
|
|
* @return \Jose\Util\BigInteger |
1749
|
|
|
*/ |
1750
|
|
|
private static function _random_number_helper($size) |
1751
|
|
|
{ |
1752
|
|
|
if (class_exists('\phpseclib\Crypt\Random')) { |
1753
|
|
|
$random = random_bytes($size); |
1754
|
|
|
} else { |
1755
|
|
|
$random = ''; |
1756
|
|
|
|
1757
|
|
|
if ($size & 1) { |
1758
|
|
|
$random .= chr(mt_rand(0, 255)); |
1759
|
|
|
} |
1760
|
|
|
|
1761
|
|
|
$blocks = $size >> 1; |
1762
|
|
|
for ($i = 0; $i < $blocks; ++$i) { |
1763
|
|
|
// mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems |
1764
|
|
|
$random .= pack('n', mt_rand(0, 0xFFFF)); |
1765
|
|
|
} |
1766
|
|
|
} |
1767
|
|
|
|
1768
|
|
|
return new static($random, 256); |
1769
|
|
|
} |
1770
|
|
|
|
1771
|
|
|
/** |
1772
|
|
|
* Generate a random number. |
1773
|
|
|
* |
1774
|
|
|
* Returns a random number between $min and $max where $min and $max |
1775
|
|
|
* can be defined using one of the two methods: |
1776
|
|
|
* |
1777
|
|
|
* BigInteger::random($min, $max) |
1778
|
|
|
* BigInteger::random($max, $min) |
1779
|
|
|
* |
1780
|
|
|
* @param \Jose\Util\eger $arg1 |
|
|
|
|
1781
|
|
|
* @param \Jose\Util\eger $arg2 |
|
|
|
|
1782
|
|
|
* |
1783
|
|
|
* @return \Jose\Util\BigInteger |
1784
|
|
|
*/ |
1785
|
|
|
public static function random(BigInteger $min, BigInteger $max) |
1786
|
|
|
{ |
1787
|
|
|
$compare = $max->compare($min); |
1788
|
|
|
|
1789
|
|
|
if (!$compare) { |
1790
|
|
|
return $this->_normalize($min); |
|
|
|
|
1791
|
|
|
} elseif ($compare < 0) { |
1792
|
|
|
// if $min is bigger then $max, swap $min and $max |
1793
|
|
|
$temp = $max; |
1794
|
|
|
$max = $min; |
1795
|
|
|
$min = $temp; |
1796
|
|
|
} |
1797
|
|
|
|
1798
|
|
|
static $one; |
1799
|
|
|
if (!isset($one)) { |
1800
|
|
|
$one = new static(1); |
1801
|
|
|
} |
1802
|
|
|
|
1803
|
|
|
$max = $max->subtract($min->subtract($one)); |
1804
|
|
|
$size = strlen(ltrim($max->toBytes(), chr(0))); |
1805
|
|
|
|
1806
|
|
|
/* |
1807
|
|
|
doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
1808
|
|
|
eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
1809
|
|
|
would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
1810
|
|
|
not all numbers would be equally likely. some would be more likely than others. |
1811
|
|
|
|
1812
|
|
|
creating a whole new random number until you find one that is within the range doesn't work |
1813
|
|
|
because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
1814
|
|
|
would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
1815
|
|
|
would be pretty high that $random would be greater than $max. |
1816
|
|
|
|
1817
|
|
|
phpseclib works around this using the technique described here: |
1818
|
|
|
|
1819
|
|
|
http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
1820
|
|
|
*/ |
1821
|
|
|
$random_max = new static(chr(1).str_repeat("\0", $size), 256); |
1822
|
|
|
$random = static::_random_number_helper($size); |
|
|
|
|
1823
|
|
|
|
1824
|
|
|
list($max_multiple) = $random_max->divide($max); |
1825
|
|
|
$max_multiple = $max_multiple->multiply($max); |
1826
|
|
|
|
1827
|
|
|
while ($random->compare($max_multiple) >= 0) { |
1828
|
|
|
$random = $random->subtract($max_multiple); |
1829
|
|
|
$random_max = $random_max->subtract($max_multiple); |
1830
|
|
|
$random = $random->bitwise_leftShift(8); |
1831
|
|
|
$random = $random->add(self::_random_number_helper(1)); |
1832
|
|
|
$random_max = $random_max->bitwise_leftShift(8); |
1833
|
|
|
list($max_multiple) = $random_max->divide($max); |
1834
|
|
|
$max_multiple = $max_multiple->multiply($max); |
1835
|
|
|
} |
1836
|
|
|
list(, $random) = $random->divide($max); |
1837
|
|
|
|
1838
|
|
|
return $random->add($min); |
1839
|
|
|
} |
1840
|
|
|
|
1841
|
|
|
/** |
1842
|
|
|
* Generate a random prime number. |
1843
|
|
|
* |
1844
|
|
|
* If there's not a prime within the given range, false will be returned. |
1845
|
|
|
* If more than $timeout seconds have elapsed, give up and return false. |
1846
|
|
|
* |
1847
|
|
|
* @param \Jose\Util\teger $min |
1848
|
|
|
* @param \Jose\Util\teger $max |
1849
|
|
|
* @param int $timeout |
1850
|
|
|
* |
1851
|
|
|
* @return Math_BigInteger|false |
1852
|
|
|
* |
1853
|
|
|
*/ |
1854
|
|
|
public static function randomPrime(BigInteger $min, BigInteger $max, $timeout = false) |
1855
|
|
|
{ |
1856
|
|
|
$compare = $max->compare($min); |
1857
|
|
|
|
1858
|
|
|
if (!$compare) { |
1859
|
|
|
return $min->isPrime() ? $min : false; |
|
|
|
|
1860
|
|
|
} elseif ($compare < 0) { |
1861
|
|
|
// if $min is bigger then $max, swap $min and $max |
1862
|
|
|
$temp = $max; |
1863
|
|
|
$max = $min; |
1864
|
|
|
$min = $temp; |
1865
|
|
|
} |
1866
|
|
|
|
1867
|
|
|
static $one, $two; |
1868
|
|
|
if (!isset($one)) { |
1869
|
|
|
$one = new static(1); |
1870
|
|
|
$two = new static(2); |
1871
|
|
|
} |
1872
|
|
|
|
1873
|
|
|
$start = time(); |
1874
|
|
|
|
1875
|
|
|
$x = self::random($min, $max); |
1876
|
|
|
|
1877
|
|
|
// gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>. |
1878
|
|
|
if (MATH_BIGINTEGER_MODE == self::MODE_GMP && extension_loaded('gmp')) { |
1879
|
|
|
$p = new static(); |
1880
|
|
|
$p->value = gmp_nextprime($x->value); |
|
|
|
|
1881
|
|
|
|
1882
|
|
|
if ($p->compare($max) <= 0) { |
1883
|
|
|
return $p; |
1884
|
|
|
} |
1885
|
|
|
|
1886
|
|
|
if (!$min->equals($x)) { |
1887
|
|
|
$x = $x->subtract($one); |
1888
|
|
|
} |
1889
|
|
|
|
1890
|
|
|
return self::randomPrime($min, $x); |
1891
|
|
|
} |
1892
|
|
|
|
1893
|
|
|
if ($x->equals($two)) { |
1894
|
|
|
return $x; |
1895
|
|
|
} |
1896
|
|
|
|
1897
|
|
|
$x->_make_odd(); |
1898
|
|
|
if ($x->compare($max) > 0) { |
1899
|
|
|
// if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range |
1900
|
|
|
if ($min->equals($max)) { |
1901
|
|
|
return false; |
1902
|
|
|
} |
1903
|
|
|
$x = clone $min; |
1904
|
|
|
$x->_make_odd(); |
1905
|
|
|
} |
1906
|
|
|
|
1907
|
|
|
$initial_x = clone $x; |
1908
|
|
|
|
1909
|
|
|
while (true) { |
1910
|
|
|
if ($timeout !== false && time() - $start > $timeout) { |
1911
|
|
|
return false; |
1912
|
|
|
} |
1913
|
|
|
|
1914
|
|
|
if ($x->isPrime()) { |
|
|
|
|
1915
|
|
|
return $x; |
1916
|
|
|
} |
1917
|
|
|
|
1918
|
|
|
$x = $x->add($two); |
1919
|
|
|
|
1920
|
|
|
if ($x->compare($max) > 0) { |
1921
|
|
|
$x = clone $min; |
1922
|
|
|
if ($x->equals($two)) { |
1923
|
|
|
return $x; |
1924
|
|
|
} |
1925
|
|
|
$x->_make_odd(); |
1926
|
|
|
} |
1927
|
|
|
|
1928
|
|
|
if ($x->equals($initial_x)) { |
1929
|
|
|
return false; |
1930
|
|
|
} |
1931
|
|
|
} |
1932
|
|
|
} |
1933
|
|
|
|
1934
|
|
|
/** |
1935
|
|
|
* Make the current number odd. |
1936
|
|
|
* |
1937
|
|
|
* If the current number is odd it'll be unchanged. If it's even, one will be added to it. |
1938
|
|
|
*/ |
1939
|
|
|
private function _make_odd() |
1940
|
|
|
{ |
1941
|
|
|
switch (MATH_BIGINTEGER_MODE) { |
1942
|
|
|
case self::MODE_GMP: |
1943
|
|
|
gmp_setbit($this->value, 0); |
1944
|
|
|
break; |
1945
|
|
|
case self::MODE_BCMATH: |
1946
|
|
|
if ($this->value[strlen($this->value) - 1] % 2 == 0) { |
1947
|
|
|
$this->value = bcadd($this->value, '1'); |
|
|
|
|
1948
|
|
|
} |
1949
|
|
|
break; |
1950
|
|
|
default: |
1951
|
|
|
$this->value[0] |= 1; |
1952
|
|
|
} |
1953
|
|
|
} |
1954
|
|
|
|
1955
|
|
|
/** |
1956
|
|
|
* Normalize. |
1957
|
|
|
* |
1958
|
|
|
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
1959
|
|
|
* |
1960
|
|
|
* @param \Jose\Util\BigInteger |
1961
|
|
|
* |
1962
|
|
|
* @return \Jose\Util\BigInteger |
1963
|
|
|
*/ |
1964
|
|
|
private function _normalize($result) |
1965
|
|
|
{ |
1966
|
|
|
$result->precision = $this->precision; |
1967
|
|
|
$result->bitmask = $this->bitmask; |
1968
|
|
|
|
1969
|
|
|
if ($this->bitmask !== false) { |
1970
|
|
|
$result->value = gmp_and($result->value, $result->bitmask->value); |
1971
|
|
|
} |
1972
|
|
|
|
1973
|
|
|
return $result; |
1974
|
|
|
} |
1975
|
|
|
|
1976
|
|
|
/** |
1977
|
|
|
* Trim. |
1978
|
|
|
* |
1979
|
|
|
* Removes leading zeros |
1980
|
|
|
* |
1981
|
|
|
* @param array $value |
1982
|
|
|
* |
1983
|
|
|
* @return \Jose\Util\BigInteger |
1984
|
|
|
*/ |
1985
|
|
|
private static function _trim($value) |
1986
|
|
|
{ |
1987
|
|
|
for ($i = count($value) - 1; $i >= 0; --$i) { |
1988
|
|
|
if ($value[$i]) { |
1989
|
|
|
break; |
1990
|
|
|
} |
1991
|
|
|
unset($value[$i]); |
1992
|
|
|
} |
1993
|
|
|
|
1994
|
|
|
return $value; |
1995
|
|
|
} |
1996
|
|
|
|
1997
|
|
|
/** |
1998
|
|
|
* Array Repeat. |
1999
|
|
|
* |
2000
|
|
|
* @param $input Array |
2001
|
|
|
* @param $multiplier mixed |
2002
|
|
|
* |
2003
|
|
|
* @return array |
2004
|
|
|
*/ |
2005
|
|
|
private static function _array_repeat($input, $multiplier) |
2006
|
|
|
{ |
2007
|
|
|
return ($multiplier) ? array_fill(0, $multiplier, $input) : []; |
2008
|
|
|
} |
2009
|
|
|
|
2010
|
|
|
/** |
2011
|
|
|
* Logical Left Shift. |
2012
|
|
|
* |
2013
|
|
|
* Shifts binary strings $shift bits, essentially multiplying by 2**$shift. |
2014
|
|
|
* |
2015
|
|
|
* @param $x String |
2016
|
|
|
* @param $shift Integer |
2017
|
|
|
* |
2018
|
|
|
* @return string |
2019
|
|
|
*/ |
2020
|
|
|
private static function _base256_lshift(&$x, $shift) |
2021
|
|
|
{ |
2022
|
|
|
if ($shift == 0) { |
2023
|
|
|
return; |
2024
|
|
|
} |
2025
|
|
|
|
2026
|
|
|
$num_bytes = $shift >> 3; // eg. floor($shift/8) |
2027
|
|
|
$shift &= 7; // eg. $shift % 8 |
2028
|
|
|
|
2029
|
|
|
$carry = 0; |
2030
|
|
|
for ($i = strlen($x) - 1; $i >= 0; --$i) { |
2031
|
|
|
$temp = ord($x[$i]) << $shift | $carry; |
2032
|
|
|
$x[$i] = chr($temp); |
2033
|
|
|
$carry = $temp >> 8; |
2034
|
|
|
} |
2035
|
|
|
$carry = ($carry != 0) ? chr($carry) : ''; |
2036
|
|
|
$x = $carry.$x.str_repeat(chr(0), $num_bytes); |
2037
|
|
|
} |
2038
|
|
|
|
2039
|
|
|
/** |
2040
|
|
|
* Single digit division. |
2041
|
|
|
* |
2042
|
|
|
* Even if int64 is being used the division operator will return a float64 value |
2043
|
|
|
* if the dividend is not evenly divisible by the divisor. Since a float64 doesn't |
2044
|
|
|
* have the precision of int64 this is a problem so, when int64 is being used, |
2045
|
|
|
* we'll guarantee that the dividend is divisible by first subtracting the remainder. |
2046
|
|
|
* |
2047
|
|
|
* @param int $x |
2048
|
|
|
* @param int $y |
2049
|
|
|
* |
2050
|
|
|
* @return int |
2051
|
|
|
*/ |
2052
|
|
|
private static function _safe_divide($x, $y) |
2053
|
|
|
{ |
2054
|
|
|
if (self::$base === 26) { |
2055
|
|
|
return (int) ($x / $y); |
2056
|
|
|
} |
2057
|
|
|
|
2058
|
|
|
// self::$base === 31 |
2059
|
|
|
return ($x - ($x % $y)) / $y; |
2060
|
|
|
} |
2061
|
|
|
} |
2062
|
|
|
|
Adding a
@return
annotation to a constructor is not recommended, since a constructor does not have a meaningful return value.Please refer to the PHP core documentation on constructors.