1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/* |
4
|
|
|
* The MIT License (MIT) |
5
|
|
|
* |
6
|
|
|
* Copyright (c) 2014-2016 Spomky-Labs |
7
|
|
|
* |
8
|
|
|
* This software may be modified and distributed under the terms |
9
|
|
|
* of the MIT license. See the LICENSE file for details. |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace Jose\Util; |
13
|
|
|
|
14
|
|
|
final class BigInteger |
15
|
|
|
{ |
16
|
|
|
/** |
17
|
|
|
* Holds the BigInteger's value. |
18
|
|
|
* |
19
|
|
|
* @var resource |
20
|
|
|
*/ |
21
|
|
|
private $value; |
22
|
|
|
|
23
|
|
|
/** |
24
|
|
|
* Holds the BigInteger's magnitude. |
25
|
|
|
* |
26
|
|
|
* @var bool |
27
|
|
|
*/ |
28
|
|
|
private $is_negative = false; |
29
|
|
|
|
30
|
|
|
/** |
31
|
|
|
* Converts base-10 and binary strings (base-256) to BigIntegers. |
32
|
|
|
* |
33
|
|
|
* If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
34
|
|
|
* two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
35
|
|
|
* |
36
|
|
|
* Here's an example: |
37
|
|
|
* <code> |
38
|
|
|
* <?php |
39
|
|
|
* $a = new \Jose\Util\in base-16 |
40
|
|
|
* |
41
|
|
|
* echo $a->toString(); // outputs 50 |
42
|
|
|
* ?> |
43
|
|
|
* </code> |
44
|
|
|
* |
45
|
|
|
* @param $x base-10 number or base-$base number if $base set. |
46
|
|
|
* @param int $base |
47
|
|
|
*/ |
48
|
|
|
public function __construct($x = 0, $base = 10) |
49
|
|
|
{ |
50
|
|
|
if(is_resource($x) && get_resource_type($x) == 'GMP integer') { |
51
|
|
|
$this->value = $x; |
52
|
|
|
|
53
|
|
|
return; |
54
|
|
|
} |
55
|
|
|
|
56
|
|
|
$this->value = gmp_init(0); |
|
|
|
|
57
|
|
|
|
58
|
|
|
// '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
59
|
|
|
// '0' is the only value like this per http://php.net/empty |
60
|
|
|
if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
|
|
|
|
61
|
|
|
return; |
62
|
|
|
} |
63
|
|
|
|
64
|
|
|
switch ($base) { |
65
|
|
|
case -256: |
66
|
|
|
if (ord($x[0]) & 0x80) { |
67
|
|
|
$x = ~$x; |
68
|
|
|
$this->is_negative = true; |
69
|
|
|
} |
70
|
|
|
case 256: |
71
|
|
|
$sign = $this->is_negative ? '-' : ''; |
72
|
|
|
$this->value = gmp_init($sign.'0x'.bin2hex($x)); |
|
|
|
|
73
|
|
|
|
74
|
|
|
if ($this->is_negative) { |
75
|
|
|
$this->is_negative = false; |
76
|
|
|
$temp = $this->add(new static('-1')); |
77
|
|
|
$this->value = $temp->value; |
78
|
|
|
} |
79
|
|
|
break; |
80
|
|
|
case 10: |
81
|
|
|
case -10: |
82
|
|
|
// (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
83
|
|
|
// (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
84
|
|
|
// [^-0-9].*: find any non-numeric characters and then any characters that follow that |
85
|
|
|
$x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
86
|
|
|
|
87
|
|
|
$this->value = gmp_init($x); |
|
|
|
|
88
|
|
|
break; |
89
|
|
|
} |
90
|
|
|
} |
91
|
|
|
|
92
|
|
|
/** |
93
|
|
|
* Converts a BigInteger to a byte string (eg. base-256). |
94
|
|
|
* |
95
|
|
|
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
96
|
|
|
* saved as two's compliment. |
97
|
|
|
* |
98
|
|
|
* Here's an example: |
99
|
|
|
* <code> |
100
|
|
|
* <?php |
101
|
|
|
* $a = new \Jose\Util\ger('65'); |
102
|
|
|
* |
103
|
|
|
* echo $a->toBytes(); // outputs chr(65) |
104
|
|
|
* ?> |
105
|
|
|
* </code> |
106
|
|
|
* |
107
|
|
|
* @param bool $twos_compliment |
|
|
|
|
108
|
|
|
* |
109
|
|
|
* @return string |
110
|
|
|
* |
111
|
|
|
*/ |
112
|
|
|
public function toBytes() |
113
|
|
|
{ |
114
|
|
|
if (gmp_cmp($this->value, gmp_init(0)) === 0) { |
115
|
|
|
return ''; |
116
|
|
|
} |
117
|
|
|
|
118
|
|
|
$temp = gmp_strval(gmp_abs($this->value), 16); |
119
|
|
|
$temp = (strlen($temp) & 1) ? '0'.$temp : $temp; |
120
|
|
|
$temp = hex2bin($temp); |
121
|
|
|
|
122
|
|
|
return ltrim($temp, chr(0)); |
123
|
|
|
} |
124
|
|
|
|
125
|
|
|
/** |
126
|
|
|
* Adds two BigIntegers. |
127
|
|
|
* |
128
|
|
|
* Here's an example: |
129
|
|
|
* <code> |
130
|
|
|
* <?php |
131
|
|
|
* $a = new \Jose\Util\ger('10'); |
132
|
|
|
* $b = new \Jose\Util\ger('20'); |
133
|
|
|
* |
134
|
|
|
* $c = $a->add($b); |
135
|
|
|
* |
136
|
|
|
* echo $c->toString(); // outputs 30 |
137
|
|
|
* ?> |
138
|
|
|
* </code> |
139
|
|
|
* |
140
|
|
|
* @param \Jose\Util\BigInteger $y |
141
|
|
|
* |
142
|
|
|
* @return \Jose\Util\BigInteger |
143
|
|
|
* |
144
|
|
|
*/ |
145
|
|
|
public function add(BigInteger $y) |
146
|
|
|
{ |
147
|
|
|
$temp = new static(); |
148
|
|
|
$temp->value = gmp_add($this->value, $y->value); |
149
|
|
|
|
150
|
|
|
return $temp; |
151
|
|
|
} |
152
|
|
|
|
153
|
|
|
/** |
154
|
|
|
* Subtracts two BigIntegers. |
155
|
|
|
* |
156
|
|
|
* Here's an example: |
157
|
|
|
* <code> |
158
|
|
|
* <?php |
159
|
|
|
* $a = new \Jose\Util\ger('10'); |
160
|
|
|
* $b = new \Jose\Util\ger('20'); |
161
|
|
|
* |
162
|
|
|
* $c = $a->subtract($b); |
163
|
|
|
* |
164
|
|
|
* echo $c->toString(); // outputs -10 |
165
|
|
|
* ?> |
166
|
|
|
* </code> |
167
|
|
|
* |
168
|
|
|
* @param \Jose\Util\BigInteger $y |
169
|
|
|
* |
170
|
|
|
* @return \Jose\Util\BigInteger |
171
|
|
|
* |
172
|
|
|
*/ |
173
|
|
|
public function subtract(BigInteger $y) |
174
|
|
|
{ |
175
|
|
|
$temp = new static(); |
176
|
|
|
$temp->value = gmp_sub($this->value, $y->value); |
177
|
|
|
|
178
|
|
|
return $temp; |
179
|
|
|
} |
180
|
|
|
|
181
|
|
|
/** |
182
|
|
|
* Multiplies two BigIntegers. |
183
|
|
|
* |
184
|
|
|
* Here's an example: |
185
|
|
|
* <code> |
186
|
|
|
* <?php |
187
|
|
|
* $a = new \Jose\Util\ger('10'); |
188
|
|
|
* $b = new \Jose\Util\ger('20'); |
189
|
|
|
* |
190
|
|
|
* $c = $a->multiply($b); |
191
|
|
|
* |
192
|
|
|
* echo $c->toString(); // outputs 200 |
193
|
|
|
* ?> |
194
|
|
|
* </code> |
195
|
|
|
* |
196
|
|
|
* @param \Jose\Util\BigInteger $x |
197
|
|
|
* |
198
|
|
|
* @return \Jose\Util\BigInteger |
199
|
|
|
*/ |
200
|
|
|
public function multiply(BigInteger $x) |
201
|
|
|
{ |
202
|
|
|
$temp = new static(); |
203
|
|
|
$temp->value = gmp_mul($this->value, $x->value); |
204
|
|
|
|
205
|
|
|
return $temp; |
206
|
|
|
} |
207
|
|
|
|
208
|
|
|
/** |
209
|
|
|
* Divides two BigIntegers. |
210
|
|
|
* |
211
|
|
|
* Returns an array whose first element contains the quotient and whose second element contains the |
212
|
|
|
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
213
|
|
|
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
214
|
|
|
* and the divisor (basically, the "common residue" is the first positive modulo). |
215
|
|
|
* |
216
|
|
|
* Here's an example: |
217
|
|
|
* <code> |
218
|
|
|
* <?php |
219
|
|
|
* $a = new \Jose\Util\ger('10'); |
220
|
|
|
* $b = new \Jose\Util\ger('20'); |
221
|
|
|
* |
222
|
|
|
* list($quotient, $remainder) = $a->divide($b); |
223
|
|
|
* |
224
|
|
|
* echo $quotient->toString(); // outputs 0 |
225
|
|
|
* echo "\r\n"; |
226
|
|
|
* echo $remainder->toString(); // outputs 10 |
227
|
|
|
* ?> |
228
|
|
|
* </code> |
229
|
|
|
* @param \Jose\Util\BigInteger $y |
230
|
|
|
* |
231
|
|
|
* @return \Jose\Util\BigInteger[] |
232
|
|
|
* |
233
|
|
|
*/ |
234
|
|
|
public function divide(BigInteger $y) |
235
|
|
|
{ |
236
|
|
|
$quotient = new static(); |
237
|
|
|
$remainder = new static(); |
238
|
|
|
|
239
|
|
|
list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
240
|
|
|
|
241
|
|
|
if (gmp_sign($remainder->value) < 0) { |
242
|
|
|
$remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
243
|
|
|
} |
244
|
|
|
|
245
|
|
|
return [$quotient, $remainder]; |
246
|
|
|
} |
247
|
|
|
|
248
|
|
|
/** |
249
|
|
|
* Performs modular exponentiation. |
250
|
|
|
* |
251
|
|
|
* Here's an example: |
252
|
|
|
* <code> |
253
|
|
|
* <?php |
254
|
|
|
* $a = new \Jose\Util\ger('10'); |
255
|
|
|
* $b = new \Jose\Util\ger('20'); |
256
|
|
|
* $c = new \Jose\Util\ger('30'); |
257
|
|
|
* |
258
|
|
|
* $c = $a->modPow($b, $c); |
259
|
|
|
* |
260
|
|
|
* echo $c->toString(); // outputs 10 |
261
|
|
|
* ?> |
262
|
|
|
* </code> |
263
|
|
|
* |
264
|
|
|
* @param \Jose\Util\BigInteger $e |
265
|
|
|
* @param \Jose\Util\BigInteger $n |
266
|
|
|
* |
267
|
|
|
* @return \Jose\Util\BigInteger |
268
|
|
|
* |
269
|
|
|
* and although the approach involving repeated squaring does vastly better, it, too, is impractical |
270
|
|
|
* for our purposes. The reason being that division - by far the most complicated and time-consuming |
271
|
|
|
* of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
272
|
|
|
* |
273
|
|
|
* Modular reductions resolve this issue. Although an individual modular reduction takes more time |
274
|
|
|
* then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
275
|
|
|
* |
276
|
|
|
* The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
277
|
|
|
* although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
278
|
|
|
* base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
279
|
|
|
* the product of two odd numbers is odd), but what about when RSA isn't used? |
280
|
|
|
* |
281
|
|
|
* In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
282
|
|
|
* Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
283
|
|
|
* modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
284
|
|
|
* uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
285
|
|
|
* the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
286
|
|
|
* {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
287
|
|
|
*/ |
288
|
|
|
public function modPow(BigInteger $e, BigInteger $n) |
289
|
|
|
{ |
290
|
|
|
$n = $n->abs(); |
291
|
|
|
|
292
|
|
|
if ($e->compare(new static()) < 0) { |
293
|
|
|
$e = $e->abs(); |
294
|
|
|
|
295
|
|
|
$temp = $this->modInverse($n); |
296
|
|
|
if ($temp === false) { |
297
|
|
|
return false; |
|
|
|
|
298
|
|
|
} |
299
|
|
|
|
300
|
|
|
return $temp->modPow($e, $n); |
301
|
|
|
} |
302
|
|
|
|
303
|
|
|
$temp = new static(); |
304
|
|
|
$temp->value = gmp_powm($this->value, $e->value, $n->value); |
305
|
|
|
|
306
|
|
|
return $temp; |
307
|
|
|
} |
308
|
|
|
|
309
|
|
|
/** |
310
|
|
|
* Calculates modular inverses. |
311
|
|
|
* |
312
|
|
|
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
313
|
|
|
* |
314
|
|
|
* Here's an example: |
315
|
|
|
* <code> |
316
|
|
|
* <?php |
317
|
|
|
* $a = new \Jose\Util\teger(30); |
318
|
|
|
* $b = new \Jose\Util\teger(17); |
319
|
|
|
* |
320
|
|
|
* $c = $a->modInverse($b); |
321
|
|
|
* echo $c->toString(); // outputs 4 |
322
|
|
|
* |
323
|
|
|
* echo "\r\n"; |
324
|
|
|
* |
325
|
|
|
* $d = $a->multiply($c); |
326
|
|
|
* list(, $d) = $d->divide($b); |
327
|
|
|
* echo $d; // outputs 1 (as per the definition of modular inverse) |
328
|
|
|
* ?> |
329
|
|
|
* </code> |
330
|
|
|
* |
331
|
|
|
* @param \Jose\Util\BigInteger $n |
332
|
|
|
* |
333
|
|
|
* @return \Jose\Util\BigInteger|bool |
334
|
|
|
* |
335
|
|
|
*/ |
336
|
|
|
public function modInverse(BigInteger $n) |
337
|
|
|
{ |
338
|
|
|
$temp = new static(); |
339
|
|
|
$temp->value = gmp_invert($this->value, $n->value); |
340
|
|
|
|
341
|
|
|
return $temp->value === false ? false : $temp; |
342
|
|
|
} |
343
|
|
|
|
344
|
|
|
/** |
345
|
|
|
* Absolute value. |
346
|
|
|
* |
347
|
|
|
* @return \Jose\Util\BigInteger |
348
|
|
|
*/ |
349
|
|
|
public function abs() |
350
|
|
|
{ |
351
|
|
|
$temp = new static(); |
352
|
|
|
|
353
|
|
|
$temp->value = gmp_abs($this->value); |
354
|
|
|
|
355
|
|
|
return $temp; |
356
|
|
|
} |
357
|
|
|
|
358
|
|
|
/** |
359
|
|
|
* Compares two numbers. |
360
|
|
|
* |
361
|
|
|
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
362
|
|
|
* demonstrated thusly: |
363
|
|
|
* |
364
|
|
|
* $x > $y: $x->compare($y) > 0 |
365
|
|
|
* $x < $y: $x->compare($y) < 0 |
366
|
|
|
* $x == $y: $x->compare($y) == 0 |
367
|
|
|
* |
368
|
|
|
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
369
|
|
|
* |
370
|
|
|
* @param \Jose\Util\BigInteger $y |
371
|
|
|
* |
372
|
|
|
* @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
373
|
|
|
* |
374
|
|
|
*/ |
375
|
|
|
public function compare(BigInteger $y) |
376
|
|
|
{ |
377
|
|
|
return gmp_cmp($this->value, $y->value); |
378
|
|
|
} |
379
|
|
|
|
380
|
|
|
/** |
381
|
|
|
* Logical Left Shift. |
382
|
|
|
* |
383
|
|
|
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
384
|
|
|
* |
385
|
|
|
* @param int $shift |
386
|
|
|
* |
387
|
|
|
* @return \Jose\Util\BigInteger |
388
|
|
|
* |
389
|
|
|
*/ |
390
|
|
|
public function bitwise_leftShift($shift) |
391
|
|
|
{ |
392
|
|
|
$temp = new static(); |
393
|
|
|
|
394
|
|
|
static $two; |
395
|
|
|
|
396
|
|
|
if (!isset($two)) { |
397
|
|
|
$two = gmp_init('2'); |
398
|
|
|
} |
399
|
|
|
|
400
|
|
|
$temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
401
|
|
|
|
402
|
|
|
return $temp; |
403
|
|
|
} |
404
|
|
|
|
405
|
|
|
/** |
406
|
|
|
* Generates a random BigInteger. |
407
|
|
|
* |
408
|
|
|
* Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
409
|
|
|
* |
410
|
|
|
* @param int $size |
411
|
|
|
* |
412
|
|
|
* @return \Jose\Util\BigInteger |
413
|
|
|
*/ |
414
|
|
|
private static function _random_number_helper($size) |
415
|
|
|
{ |
416
|
|
|
return new static(random_bytes($size), 256); |
417
|
|
|
} |
418
|
|
|
|
419
|
|
|
/** |
420
|
|
|
* Generate a random number. |
421
|
|
|
* |
422
|
|
|
* Returns a random number between $min and $max where $min and $max |
423
|
|
|
* can be defined using one of the two methods: |
424
|
|
|
* |
425
|
|
|
* BigInteger::random($min, $max) |
426
|
|
|
* BigInteger::random($max, $min) |
427
|
|
|
* |
428
|
|
|
* @param \Jose\Util\BigInteger $min |
429
|
|
|
* @param \Jose\Util\BigInteger $max |
430
|
|
|
* |
431
|
|
|
* @return \Jose\Util\BigInteger |
432
|
|
|
*/ |
433
|
|
|
public static function random(BigInteger $min, BigInteger $max) |
434
|
|
|
{ |
435
|
|
|
$compare = $max->compare($min); |
436
|
|
|
|
437
|
|
|
if (!$compare) { |
438
|
|
|
return $min; |
439
|
|
|
} elseif ($compare < 0) { |
440
|
|
|
// if $min is bigger then $max, swap $min and $max |
441
|
|
|
$temp = $max; |
442
|
|
|
$max = $min; |
443
|
|
|
$min = $temp; |
444
|
|
|
} |
445
|
|
|
|
446
|
|
|
static $one; |
447
|
|
|
if (!isset($one)) { |
448
|
|
|
$one = new static(1); |
449
|
|
|
} |
450
|
|
|
|
451
|
|
|
$max = $max->subtract($min->subtract($one)); |
452
|
|
|
$size = strlen(ltrim($max->toBytes(), chr(0))); |
453
|
|
|
|
454
|
|
|
/* |
455
|
|
|
doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
456
|
|
|
eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
457
|
|
|
would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
458
|
|
|
not all numbers would be equally likely. some would be more likely than others. |
459
|
|
|
|
460
|
|
|
creating a whole new random number until you find one that is within the range doesn't work |
461
|
|
|
because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
462
|
|
|
would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
463
|
|
|
would be pretty high that $random would be greater than $max. |
464
|
|
|
|
465
|
|
|
phpseclib works around this using the technique described here: |
466
|
|
|
|
467
|
|
|
http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
468
|
|
|
*/ |
469
|
|
|
$random_max = new static(chr(1).str_repeat("\0", $size), 256); |
470
|
|
|
$random = self::_random_number_helper($size); |
471
|
|
|
|
472
|
|
|
list($max_multiple) = $random_max->divide($max); |
473
|
|
|
$max_multiple = $max_multiple->multiply($max); |
474
|
|
|
|
475
|
|
|
while ($random->compare($max_multiple) >= 0) { |
476
|
|
|
$random = $random->subtract($max_multiple); |
477
|
|
|
$random_max = $random_max->subtract($max_multiple); |
478
|
|
|
$random = $random->bitwise_leftShift(8); |
479
|
|
|
$random = $random->add(self::_random_number_helper(1)); |
480
|
|
|
$random_max = $random_max->bitwise_leftShift(8); |
481
|
|
|
list($max_multiple) = $random_max->divide($max); |
482
|
|
|
$max_multiple = $max_multiple->multiply($max); |
483
|
|
|
} |
484
|
|
|
list(, $random) = $random->divide($max); |
485
|
|
|
|
486
|
|
|
return $random->add($min); |
487
|
|
|
} |
488
|
|
|
|
489
|
|
|
} |
490
|
|
|
|
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..