Complex classes like BigInteger often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes. You can also have a look at the cohesion graph to spot any un-connected, or weakly-connected components.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BigInteger, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
14 | final class BigInteger |
||
15 | { |
||
16 | /**#@+ |
||
17 | * Array constants |
||
18 | * |
||
19 | * Rather than create a thousands and thousands of new BigInteger objects in repeated function calls to add() and |
||
20 | * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them. |
||
21 | * |
||
22 | */ |
||
23 | /** |
||
24 | * $result[self::VALUE] contains the value. |
||
25 | */ |
||
26 | const VALUE = 0; |
||
27 | /** |
||
28 | * $result[self::SIGN] contains the sign. |
||
29 | */ |
||
30 | const SIGN = 1; |
||
31 | /**#@-*/ |
||
32 | |||
33 | /**#@+ |
||
34 | * Static properties used by the pure-PHP implementation. |
||
35 | * |
||
36 | * @see __construct() |
||
37 | */ |
||
38 | private static $base; |
||
|
|||
39 | private static $baseFull; |
||
40 | private static $maxDigit; |
||
41 | private static $msb; |
||
42 | |||
43 | /** |
||
44 | * $max10 in greatest $max10Len satisfying |
||
45 | * $max10 = 10**$max10Len <= 2**$base. |
||
46 | */ |
||
47 | private static $max10; |
||
48 | |||
49 | /** |
||
50 | * $max10Len in greatest $max10Len satisfying |
||
51 | * $max10 = 10**$max10Len <= 2**$base. |
||
52 | */ |
||
53 | private static $max10Len; |
||
54 | private static $maxDigit2; |
||
55 | /**#@-*/ |
||
56 | |||
57 | /** |
||
58 | * Holds the BigInteger's value. |
||
59 | * |
||
60 | * @var resource |
||
61 | */ |
||
62 | private $value; |
||
63 | |||
64 | /** |
||
65 | * Holds the BigInteger's magnitude. |
||
66 | * |
||
67 | * @var bool |
||
68 | */ |
||
69 | private $is_negative = false; |
||
70 | |||
71 | /** |
||
72 | * Precision. |
||
73 | */ |
||
74 | private $precision = -1; |
||
75 | |||
76 | /** |
||
77 | * Precision Bitmask. |
||
78 | */ |
||
79 | private $bitmask = false; |
||
80 | |||
81 | /** |
||
82 | * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
||
83 | * |
||
84 | * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
||
85 | * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
||
86 | * |
||
87 | * Here's an example: |
||
88 | * <code> |
||
89 | * <?php |
||
90 | * $a = new \Jose\Util\in base-16 |
||
91 | * |
||
92 | * echo $a->toString(); // outputs 50 |
||
93 | * ?> |
||
94 | * </code> |
||
95 | * |
||
96 | * @param $x base-10 number or base-$base number if $base set. |
||
97 | * @param int $base |
||
98 | */ |
||
99 | public function __construct($x = 0, $base = 10) |
||
196 | |||
197 | /** |
||
198 | * Converts a BigInteger to a byte string (eg. base-256). |
||
199 | * |
||
200 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
201 | * saved as two's compliment. |
||
202 | * |
||
203 | * Here's an example: |
||
204 | * <code> |
||
205 | * <?php |
||
206 | * $a = new \Jose\Util\ger('65'); |
||
207 | * |
||
208 | * echo $a->toBytes(); // outputs chr(65) |
||
209 | * ?> |
||
210 | * </code> |
||
211 | * |
||
212 | * @param bool $twos_compliment |
||
213 | * |
||
214 | * @return string |
||
215 | * |
||
216 | */ |
||
217 | public function toBytes($twos_compliment = false) |
||
251 | |||
252 | /** |
||
253 | * Adds two BigIntegers. |
||
254 | * |
||
255 | * Here's an example: |
||
256 | * <code> |
||
257 | * <?php |
||
258 | * $a = new \Jose\Util\ger('10'); |
||
259 | * $b = new \Jose\Util\ger('20'); |
||
260 | * |
||
261 | * $c = $a->add($b); |
||
262 | * |
||
263 | * echo $c->toString(); // outputs 30 |
||
264 | * ?> |
||
265 | * </code> |
||
266 | * |
||
267 | * @param \Jose\Util\BigInteger $y |
||
268 | * |
||
269 | * @return \Jose\Util\BigInteger |
||
270 | * |
||
271 | */ |
||
272 | public function add(BigInteger $y) |
||
279 | |||
280 | /** |
||
281 | * Subtracts two BigIntegers. |
||
282 | * |
||
283 | * Here's an example: |
||
284 | * <code> |
||
285 | * <?php |
||
286 | * $a = new \Jose\Util\ger('10'); |
||
287 | * $b = new \Jose\Util\ger('20'); |
||
288 | * |
||
289 | * $c = $a->subtract($b); |
||
290 | * |
||
291 | * echo $c->toString(); // outputs -10 |
||
292 | * ?> |
||
293 | * </code> |
||
294 | * |
||
295 | * @param \Jose\Util\BigInteger $y |
||
296 | * |
||
297 | * @return \Jose\Util\BigInteger |
||
298 | * |
||
299 | */ |
||
300 | public function subtract(BigInteger $y) |
||
307 | |||
308 | /** |
||
309 | * Multiplies two BigIntegers. |
||
310 | * |
||
311 | * Here's an example: |
||
312 | * <code> |
||
313 | * <?php |
||
314 | * $a = new \Jose\Util\ger('10'); |
||
315 | * $b = new \Jose\Util\ger('20'); |
||
316 | * |
||
317 | * $c = $a->multiply($b); |
||
318 | * |
||
319 | * echo $c->toString(); // outputs 200 |
||
320 | * ?> |
||
321 | * </code> |
||
322 | * |
||
323 | * @param \Jose\Util\BigInteger $x |
||
324 | * |
||
325 | * @return \Jose\Util\BigInteger |
||
326 | */ |
||
327 | public function multiply(BigInteger $x) |
||
334 | |||
335 | /** |
||
336 | * Divides two BigIntegers. |
||
337 | * |
||
338 | * Returns an array whose first element contains the quotient and whose second element contains the |
||
339 | * "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
||
340 | * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
||
341 | * and the divisor (basically, the "common residue" is the first positive modulo). |
||
342 | * |
||
343 | * Here's an example: |
||
344 | * <code> |
||
345 | * <?php |
||
346 | * $a = new \Jose\Util\ger('10'); |
||
347 | * $b = new \Jose\Util\ger('20'); |
||
348 | * |
||
349 | * list($quotient, $remainder) = $a->divide($b); |
||
350 | * |
||
351 | * echo $quotient->toString(); // outputs 0 |
||
352 | * echo "\r\n"; |
||
353 | * echo $remainder->toString(); // outputs 10 |
||
354 | * ?> |
||
355 | * </code> |
||
356 | * |
||
357 | * @param \Jose\Util\BigInteger $y |
||
358 | * |
||
359 | * @return @return \Jose\Util\BigInteger[] |
||
360 | * |
||
361 | */ |
||
362 | public function divide(BigInteger $y) |
||
375 | |||
376 | /** |
||
377 | * Performs modular exponentiation. |
||
378 | * |
||
379 | * Here's an example: |
||
380 | * <code> |
||
381 | * <?php |
||
382 | * $a = new \Jose\Util\ger('10'); |
||
383 | * $b = new \Jose\Util\ger('20'); |
||
384 | * $c = new \Jose\Util\ger('30'); |
||
385 | * |
||
386 | * $c = $a->modPow($b, $c); |
||
387 | * |
||
388 | * echo $c->toString(); // outputs 10 |
||
389 | * ?> |
||
390 | * </code> |
||
391 | * |
||
392 | * @param \Jose\Util\BigInteger $e |
||
393 | * @param \Jose\Util\BigInteger $n |
||
394 | * |
||
395 | * @return \Jose\Util\BigInteger |
||
396 | * |
||
397 | * and although the approach involving repeated squaring does vastly better, it, too, is impractical |
||
398 | * for our purposes. The reason being that division - by far the most complicated and time-consuming |
||
399 | * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
||
400 | * |
||
401 | * Modular reductions resolve this issue. Although an individual modular reduction takes more time |
||
402 | * then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
||
403 | * |
||
404 | * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
||
405 | * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
||
406 | * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
||
407 | * the product of two odd numbers is odd), but what about when RSA isn't used? |
||
408 | * |
||
409 | * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
||
410 | * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
||
411 | * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
||
412 | * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
||
413 | * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
||
414 | * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
||
415 | */ |
||
416 | public function modPow(BigInteger $e, BigInteger $n) |
||
436 | |||
437 | /** |
||
438 | * Calculates modular inverses. |
||
439 | * |
||
440 | * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
||
441 | * |
||
442 | * Here's an example: |
||
443 | * <code> |
||
444 | * <?php |
||
445 | * $a = new \Jose\Util\teger(30); |
||
446 | * $b = new \Jose\Util\teger(17); |
||
447 | * |
||
448 | * $c = $a->modInverse($b); |
||
449 | * echo $c->toString(); // outputs 4 |
||
450 | * |
||
451 | * echo "\r\n"; |
||
452 | * |
||
453 | * $d = $a->multiply($c); |
||
454 | * list(, $d) = $d->divide($b); |
||
455 | * echo $d; // outputs 1 (as per the definition of modular inverse) |
||
456 | * ?> |
||
457 | * </code> |
||
458 | * |
||
459 | * @param \Jose\Util\BigInteger $n |
||
460 | * |
||
461 | * @return \Jose\Util\BigInteger|bool |
||
462 | * |
||
463 | */ |
||
464 | public function modInverse(BigInteger $n) |
||
471 | |||
472 | /** |
||
473 | * Absolute value. |
||
474 | * |
||
475 | * @return \Jose\Util\BigInteger |
||
476 | */ |
||
477 | public function abs() |
||
485 | |||
486 | /** |
||
487 | * Compares two numbers. |
||
488 | * |
||
489 | * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
||
490 | * demonstrated thusly: |
||
491 | * |
||
492 | * $x > $y: $x->compare($y) > 0 |
||
493 | * $x < $y: $x->compare($y) < 0 |
||
494 | * $x == $y: $x->compare($y) == 0 |
||
495 | * |
||
496 | * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
||
497 | * |
||
498 | * @param \Jose\Util\BigInteger $y |
||
499 | * |
||
500 | * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
||
501 | * |
||
502 | */ |
||
503 | public function compare(BigInteger $y) |
||
507 | |||
508 | /** |
||
509 | * Logical Left Shift. |
||
510 | * |
||
511 | * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
||
512 | * |
||
513 | * @param int $shift |
||
514 | * |
||
515 | * @return \Jose\Util\BigInteger |
||
516 | * |
||
517 | */ |
||
518 | public function bitwise_leftShift($shift) |
||
532 | |||
533 | /** |
||
534 | * Generates a random BigInteger. |
||
535 | * |
||
536 | * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
||
537 | * |
||
538 | * @param int $size |
||
539 | * |
||
540 | * @return \Jose\Util\BigInteger |
||
541 | */ |
||
542 | private static function _random_number_helper($size) |
||
546 | |||
547 | /** |
||
548 | * Generate a random number. |
||
549 | * |
||
550 | * Returns a random number between $min and $max where $min and $max |
||
551 | * can be defined using one of the two methods: |
||
552 | * |
||
553 | * BigInteger::random($min, $max) |
||
554 | * BigInteger::random($max, $min) |
||
555 | * |
||
556 | * @param \Jose\Util\BigInteger $min |
||
557 | * @param \Jose\Util\BigInteger $max |
||
558 | * |
||
559 | * @return \Jose\Util\BigInteger |
||
560 | */ |
||
561 | public static function random(BigInteger $min, BigInteger $max) |
||
616 | |||
617 | /** |
||
618 | * Normalize. |
||
619 | * |
||
620 | * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
||
621 | * |
||
622 | * @param \Jose\Util\BigInteger $result |
||
623 | * |
||
624 | * @return \Jose\Util\BigInteger |
||
625 | */ |
||
626 | private function _normalize($result) |
||
637 | } |
||
638 |
This check marks private properties in classes that are never used. Those properties can be removed.