|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
/* |
|
4
|
|
|
* The MIT License (MIT) |
|
5
|
|
|
* |
|
6
|
|
|
* Copyright (c) 2014-2016 Spomky-Labs |
|
7
|
|
|
* |
|
8
|
|
|
* This software may be modified and distributed under the terms |
|
9
|
|
|
* of the MIT license. See the LICENSE file for details. |
|
10
|
|
|
*/ |
|
11
|
|
|
|
|
12
|
|
|
namespace Jose\Util; |
|
13
|
|
|
|
|
14
|
|
|
final class BigInteger |
|
15
|
|
|
{ |
|
16
|
|
|
/** |
|
17
|
|
|
* Holds the BigInteger's value. |
|
18
|
|
|
* |
|
19
|
|
|
* @var resource |
|
20
|
|
|
*/ |
|
21
|
|
|
private $value; |
|
22
|
|
|
|
|
23
|
|
|
/** |
|
24
|
|
|
* Holds the BigInteger's magnitude. |
|
25
|
|
|
* |
|
26
|
|
|
* @var bool |
|
27
|
|
|
*/ |
|
28
|
|
|
private $is_negative = false; |
|
29
|
|
|
|
|
30
|
|
|
/** |
|
31
|
|
|
* Converts base-10 and binary strings (base-256) to BigIntegers. |
|
32
|
|
|
* |
|
33
|
|
|
* If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
|
34
|
|
|
* two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
|
35
|
|
|
* |
|
36
|
|
|
* Here's an example: |
|
37
|
|
|
* <code> |
|
38
|
|
|
* <?php |
|
39
|
|
|
* $a = new \Jose\Util\in base-16 |
|
40
|
|
|
* |
|
41
|
|
|
* echo $a->toString(); // outputs 50 |
|
42
|
|
|
* ?> |
|
43
|
|
|
* </code> |
|
44
|
|
|
* |
|
45
|
|
|
* @param $x base-10 number or base-$base number if $base set. |
|
46
|
|
|
* @param int $base |
|
47
|
|
|
*/ |
|
48
|
|
|
public function __construct($x = 0, $base = 10) |
|
49
|
|
|
{ |
|
50
|
|
|
if(is_resource($x) && get_resource_type($x) == 'GMP integer') { |
|
51
|
|
|
$this->value = $x; |
|
52
|
|
|
|
|
53
|
|
|
return; |
|
54
|
|
|
} |
|
55
|
|
|
|
|
56
|
|
|
$this->value = gmp_init(0); |
|
|
|
|
|
|
57
|
|
|
|
|
58
|
|
|
// '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 |
|
59
|
|
|
// '0' is the only value like this per http://php.net/empty |
|
60
|
|
|
if (empty($x) && (abs($base) != 256 || $x !== '0')) { |
|
|
|
|
|
|
61
|
|
|
return; |
|
62
|
|
|
} |
|
63
|
|
|
|
|
64
|
|
|
switch ($base) { |
|
65
|
|
|
case -256: |
|
66
|
|
|
if (ord($x[0]) & 0x80) { |
|
67
|
|
|
$x = ~$x; |
|
68
|
|
|
$this->is_negative = true; |
|
69
|
|
|
} |
|
70
|
|
|
case 256: |
|
71
|
|
|
$sign = $this->is_negative ? '-' : ''; |
|
72
|
|
|
$this->value = gmp_init($sign.'0x'.bin2hex($x)); |
|
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
if ($this->is_negative) { |
|
75
|
|
|
$this->is_negative = false; |
|
76
|
|
|
$temp = $this->add(new static('-1')); |
|
77
|
|
|
$this->value = $temp->value; |
|
78
|
|
|
} |
|
79
|
|
|
break; |
|
80
|
|
|
case 10: |
|
81
|
|
|
case -10: |
|
82
|
|
|
// (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that |
|
83
|
|
|
// (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals) |
|
84
|
|
|
// [^-0-9].*: find any non-numeric characters and then any characters that follow that |
|
85
|
|
|
$x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x); |
|
86
|
|
|
|
|
87
|
|
|
$this->value = gmp_init($x); |
|
|
|
|
|
|
88
|
|
|
break; |
|
89
|
|
|
} |
|
90
|
|
|
} |
|
91
|
|
|
|
|
92
|
|
|
/** |
|
93
|
|
|
* Converts a BigInteger to a byte string (eg. base-256). |
|
94
|
|
|
* |
|
95
|
|
|
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
|
96
|
|
|
* saved as two's compliment. |
|
97
|
|
|
* |
|
98
|
|
|
* Here's an example: |
|
99
|
|
|
* <code> |
|
100
|
|
|
* <?php |
|
101
|
|
|
* $a = new \Jose\Util\ger('65'); |
|
102
|
|
|
* |
|
103
|
|
|
* echo $a->toBytes(); // outputs chr(65) |
|
104
|
|
|
* ?> |
|
105
|
|
|
* </code> |
|
106
|
|
|
* |
|
107
|
|
|
* @param bool $twos_compliment |
|
|
|
|
|
|
108
|
|
|
* |
|
109
|
|
|
* @return string |
|
110
|
|
|
* |
|
111
|
|
|
*/ |
|
112
|
|
|
public function toBytes() |
|
113
|
|
|
{ |
|
114
|
|
|
if (gmp_cmp($this->value, gmp_init(0)) === 0) { |
|
115
|
|
|
return ''; |
|
116
|
|
|
} |
|
117
|
|
|
|
|
118
|
|
|
$temp = gmp_strval(gmp_abs($this->value), 16); |
|
119
|
|
|
$temp = (strlen($temp) & 1) ? '0'.$temp : $temp; |
|
120
|
|
|
$temp = hex2bin($temp); |
|
121
|
|
|
|
|
122
|
|
|
return ltrim($temp, chr(0)); |
|
123
|
|
|
} |
|
124
|
|
|
|
|
125
|
|
|
/** |
|
126
|
|
|
* Adds two BigIntegers. |
|
127
|
|
|
* |
|
128
|
|
|
* Here's an example: |
|
129
|
|
|
* <code> |
|
130
|
|
|
* <?php |
|
131
|
|
|
* $a = new \Jose\Util\ger('10'); |
|
132
|
|
|
* $b = new \Jose\Util\ger('20'); |
|
133
|
|
|
* |
|
134
|
|
|
* $c = $a->add($b); |
|
135
|
|
|
* |
|
136
|
|
|
* echo $c->toString(); // outputs 30 |
|
137
|
|
|
* ?> |
|
138
|
|
|
* </code> |
|
139
|
|
|
* |
|
140
|
|
|
* @param \Jose\Util\BigInteger $y |
|
141
|
|
|
* |
|
142
|
|
|
* @return \Jose\Util\BigInteger |
|
143
|
|
|
* |
|
144
|
|
|
*/ |
|
145
|
|
|
public function add(BigInteger $y) |
|
146
|
|
|
{ |
|
147
|
|
|
$temp = new static(); |
|
148
|
|
|
$temp->value = gmp_add($this->value, $y->value); |
|
149
|
|
|
|
|
150
|
|
|
return $this->_normalize($temp); |
|
151
|
|
|
} |
|
152
|
|
|
|
|
153
|
|
|
/** |
|
154
|
|
|
* Subtracts two BigIntegers. |
|
155
|
|
|
* |
|
156
|
|
|
* Here's an example: |
|
157
|
|
|
* <code> |
|
158
|
|
|
* <?php |
|
159
|
|
|
* $a = new \Jose\Util\ger('10'); |
|
160
|
|
|
* $b = new \Jose\Util\ger('20'); |
|
161
|
|
|
* |
|
162
|
|
|
* $c = $a->subtract($b); |
|
163
|
|
|
* |
|
164
|
|
|
* echo $c->toString(); // outputs -10 |
|
165
|
|
|
* ?> |
|
166
|
|
|
* </code> |
|
167
|
|
|
* |
|
168
|
|
|
* @param \Jose\Util\BigInteger $y |
|
169
|
|
|
* |
|
170
|
|
|
* @return \Jose\Util\BigInteger |
|
171
|
|
|
* |
|
172
|
|
|
*/ |
|
173
|
|
|
public function subtract(BigInteger $y) |
|
174
|
|
|
{ |
|
175
|
|
|
$temp = new static(); |
|
176
|
|
|
$temp->value = gmp_sub($this->value, $y->value); |
|
177
|
|
|
|
|
178
|
|
|
return $this->_normalize($temp); |
|
179
|
|
|
} |
|
180
|
|
|
|
|
181
|
|
|
/** |
|
182
|
|
|
* Multiplies two BigIntegers. |
|
183
|
|
|
* |
|
184
|
|
|
* Here's an example: |
|
185
|
|
|
* <code> |
|
186
|
|
|
* <?php |
|
187
|
|
|
* $a = new \Jose\Util\ger('10'); |
|
188
|
|
|
* $b = new \Jose\Util\ger('20'); |
|
189
|
|
|
* |
|
190
|
|
|
* $c = $a->multiply($b); |
|
191
|
|
|
* |
|
192
|
|
|
* echo $c->toString(); // outputs 200 |
|
193
|
|
|
* ?> |
|
194
|
|
|
* </code> |
|
195
|
|
|
* |
|
196
|
|
|
* @param \Jose\Util\BigInteger $x |
|
197
|
|
|
* |
|
198
|
|
|
* @return \Jose\Util\BigInteger |
|
199
|
|
|
*/ |
|
200
|
|
|
public function multiply(BigInteger $x) |
|
201
|
|
|
{ |
|
202
|
|
|
$temp = new static(); |
|
203
|
|
|
$temp->value = gmp_mul($this->value, $x->value); |
|
204
|
|
|
|
|
205
|
|
|
return $this->_normalize($temp); |
|
206
|
|
|
} |
|
207
|
|
|
|
|
208
|
|
|
/** |
|
209
|
|
|
* Divides two BigIntegers. |
|
210
|
|
|
* |
|
211
|
|
|
* Returns an array whose first element contains the quotient and whose second element contains the |
|
212
|
|
|
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
|
213
|
|
|
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
|
214
|
|
|
* and the divisor (basically, the "common residue" is the first positive modulo). |
|
215
|
|
|
* |
|
216
|
|
|
* Here's an example: |
|
217
|
|
|
* <code> |
|
218
|
|
|
* <?php |
|
219
|
|
|
* $a = new \Jose\Util\ger('10'); |
|
220
|
|
|
* $b = new \Jose\Util\ger('20'); |
|
221
|
|
|
* |
|
222
|
|
|
* list($quotient, $remainder) = $a->divide($b); |
|
223
|
|
|
* |
|
224
|
|
|
* echo $quotient->toString(); // outputs 0 |
|
225
|
|
|
* echo "\r\n"; |
|
226
|
|
|
* echo $remainder->toString(); // outputs 10 |
|
227
|
|
|
* ?> |
|
228
|
|
|
* </code> |
|
229
|
|
|
* @param \Jose\Util\BigInteger $y |
|
230
|
|
|
* |
|
231
|
|
|
* @return \Jose\Util\BigInteger[] |
|
232
|
|
|
* |
|
233
|
|
|
*/ |
|
234
|
|
|
public function divide(BigInteger $y) |
|
235
|
|
|
{ |
|
236
|
|
|
$quotient = new static(); |
|
237
|
|
|
$remainder = new static(); |
|
238
|
|
|
|
|
239
|
|
|
list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); |
|
240
|
|
|
|
|
241
|
|
|
if (gmp_sign($remainder->value) < 0) { |
|
242
|
|
|
$remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); |
|
243
|
|
|
} |
|
244
|
|
|
|
|
245
|
|
|
return [$this->_normalize($quotient), $this->_normalize($remainder)]; |
|
246
|
|
|
} |
|
247
|
|
|
|
|
248
|
|
|
/** |
|
249
|
|
|
* Performs modular exponentiation. |
|
250
|
|
|
* |
|
251
|
|
|
* Here's an example: |
|
252
|
|
|
* <code> |
|
253
|
|
|
* <?php |
|
254
|
|
|
* $a = new \Jose\Util\ger('10'); |
|
255
|
|
|
* $b = new \Jose\Util\ger('20'); |
|
256
|
|
|
* $c = new \Jose\Util\ger('30'); |
|
257
|
|
|
* |
|
258
|
|
|
* $c = $a->modPow($b, $c); |
|
259
|
|
|
* |
|
260
|
|
|
* echo $c->toString(); // outputs 10 |
|
261
|
|
|
* ?> |
|
262
|
|
|
* </code> |
|
263
|
|
|
* |
|
264
|
|
|
* @param \Jose\Util\BigInteger $e |
|
265
|
|
|
* @param \Jose\Util\BigInteger $n |
|
266
|
|
|
* |
|
267
|
|
|
* @return \Jose\Util\BigInteger |
|
268
|
|
|
* |
|
269
|
|
|
* and although the approach involving repeated squaring does vastly better, it, too, is impractical |
|
270
|
|
|
* for our purposes. The reason being that division - by far the most complicated and time-consuming |
|
271
|
|
|
* of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
|
272
|
|
|
* |
|
273
|
|
|
* Modular reductions resolve this issue. Although an individual modular reduction takes more time |
|
274
|
|
|
* then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
|
275
|
|
|
* |
|
276
|
|
|
* The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
|
277
|
|
|
* although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
|
278
|
|
|
* base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
|
279
|
|
|
* the product of two odd numbers is odd), but what about when RSA isn't used? |
|
280
|
|
|
* |
|
281
|
|
|
* In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
|
282
|
|
|
* Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
|
283
|
|
|
* modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
|
284
|
|
|
* uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
|
285
|
|
|
* the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
|
286
|
|
|
* {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
|
287
|
|
|
*/ |
|
288
|
|
|
public function modPow(BigInteger $e, BigInteger $n) |
|
289
|
|
|
{ |
|
290
|
|
|
$n = $n->abs(); |
|
291
|
|
|
|
|
292
|
|
|
if ($e->compare(new static()) < 0) { |
|
293
|
|
|
$e = $e->abs(); |
|
294
|
|
|
|
|
295
|
|
|
$temp = $this->modInverse($n); |
|
296
|
|
|
if ($temp === false) { |
|
297
|
|
|
return false; |
|
|
|
|
|
|
298
|
|
|
} |
|
299
|
|
|
|
|
300
|
|
|
return $this->_normalize($temp->modPow($e, $n)); |
|
301
|
|
|
} |
|
302
|
|
|
|
|
303
|
|
|
$temp = new static(); |
|
304
|
|
|
$temp->value = gmp_powm($this->value, $e->value, $n->value); |
|
305
|
|
|
|
|
306
|
|
|
return $this->_normalize($temp); |
|
307
|
|
|
} |
|
308
|
|
|
|
|
309
|
|
|
/** |
|
310
|
|
|
* Calculates modular inverses. |
|
311
|
|
|
* |
|
312
|
|
|
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
|
313
|
|
|
* |
|
314
|
|
|
* Here's an example: |
|
315
|
|
|
* <code> |
|
316
|
|
|
* <?php |
|
317
|
|
|
* $a = new \Jose\Util\teger(30); |
|
318
|
|
|
* $b = new \Jose\Util\teger(17); |
|
319
|
|
|
* |
|
320
|
|
|
* $c = $a->modInverse($b); |
|
321
|
|
|
* echo $c->toString(); // outputs 4 |
|
322
|
|
|
* |
|
323
|
|
|
* echo "\r\n"; |
|
324
|
|
|
* |
|
325
|
|
|
* $d = $a->multiply($c); |
|
326
|
|
|
* list(, $d) = $d->divide($b); |
|
327
|
|
|
* echo $d; // outputs 1 (as per the definition of modular inverse) |
|
328
|
|
|
* ?> |
|
329
|
|
|
* </code> |
|
330
|
|
|
* |
|
331
|
|
|
* @param \Jose\Util\BigInteger $n |
|
332
|
|
|
* |
|
333
|
|
|
* @return \Jose\Util\BigInteger|bool |
|
334
|
|
|
* |
|
335
|
|
|
*/ |
|
336
|
|
|
public function modInverse(BigInteger $n) |
|
337
|
|
|
{ |
|
338
|
|
|
$temp = new static(); |
|
339
|
|
|
$temp->value = gmp_invert($this->value, $n->value); |
|
340
|
|
|
|
|
341
|
|
|
return ($temp->value === false) ? false : $this->_normalize($temp); |
|
342
|
|
|
} |
|
343
|
|
|
|
|
344
|
|
|
/** |
|
345
|
|
|
* Absolute value. |
|
346
|
|
|
* |
|
347
|
|
|
* @return \Jose\Util\BigInteger |
|
348
|
|
|
*/ |
|
349
|
|
|
public function abs() |
|
350
|
|
|
{ |
|
351
|
|
|
$temp = new static(); |
|
352
|
|
|
|
|
353
|
|
|
$temp->value = gmp_abs($this->value); |
|
354
|
|
|
|
|
355
|
|
|
return $temp; |
|
356
|
|
|
} |
|
357
|
|
|
|
|
358
|
|
|
/** |
|
359
|
|
|
* Compares two numbers. |
|
360
|
|
|
* |
|
361
|
|
|
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
|
362
|
|
|
* demonstrated thusly: |
|
363
|
|
|
* |
|
364
|
|
|
* $x > $y: $x->compare($y) > 0 |
|
365
|
|
|
* $x < $y: $x->compare($y) < 0 |
|
366
|
|
|
* $x == $y: $x->compare($y) == 0 |
|
367
|
|
|
* |
|
368
|
|
|
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
|
369
|
|
|
* |
|
370
|
|
|
* @param \Jose\Util\BigInteger $y |
|
371
|
|
|
* |
|
372
|
|
|
* @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
|
373
|
|
|
* |
|
374
|
|
|
*/ |
|
375
|
|
|
public function compare(BigInteger $y) |
|
376
|
|
|
{ |
|
377
|
|
|
return gmp_cmp($this->value, $y->value); |
|
378
|
|
|
} |
|
379
|
|
|
|
|
380
|
|
|
/** |
|
381
|
|
|
* Logical Left Shift. |
|
382
|
|
|
* |
|
383
|
|
|
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
|
384
|
|
|
* |
|
385
|
|
|
* @param int $shift |
|
386
|
|
|
* |
|
387
|
|
|
* @return \Jose\Util\BigInteger |
|
388
|
|
|
* |
|
389
|
|
|
*/ |
|
390
|
|
|
public function bitwise_leftShift($shift) |
|
391
|
|
|
{ |
|
392
|
|
|
$temp = new static(); |
|
393
|
|
|
|
|
394
|
|
|
static $two; |
|
395
|
|
|
|
|
396
|
|
|
if (!isset($two)) { |
|
397
|
|
|
$two = gmp_init('2'); |
|
398
|
|
|
} |
|
399
|
|
|
|
|
400
|
|
|
$temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); |
|
401
|
|
|
|
|
402
|
|
|
return $this->_normalize($temp); |
|
403
|
|
|
} |
|
404
|
|
|
|
|
405
|
|
|
/** |
|
406
|
|
|
* Generates a random BigInteger. |
|
407
|
|
|
* |
|
408
|
|
|
* Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
|
409
|
|
|
* |
|
410
|
|
|
* @param int $size |
|
411
|
|
|
* |
|
412
|
|
|
* @return \Jose\Util\BigInteger |
|
413
|
|
|
*/ |
|
414
|
|
|
private static function _random_number_helper($size) |
|
415
|
|
|
{ |
|
416
|
|
|
return new static(random_bytes($size), 256); |
|
417
|
|
|
} |
|
418
|
|
|
|
|
419
|
|
|
/** |
|
420
|
|
|
* Generate a random number. |
|
421
|
|
|
* |
|
422
|
|
|
* Returns a random number between $min and $max where $min and $max |
|
423
|
|
|
* can be defined using one of the two methods: |
|
424
|
|
|
* |
|
425
|
|
|
* BigInteger::random($min, $max) |
|
426
|
|
|
* BigInteger::random($max, $min) |
|
427
|
|
|
* |
|
428
|
|
|
* @param \Jose\Util\BigInteger $min |
|
429
|
|
|
* @param \Jose\Util\BigInteger $max |
|
430
|
|
|
* |
|
431
|
|
|
* @return \Jose\Util\BigInteger |
|
432
|
|
|
*/ |
|
433
|
|
|
public static function random(BigInteger $min, BigInteger $max) |
|
434
|
|
|
{ |
|
435
|
|
|
$compare = $max->compare($min); |
|
436
|
|
|
|
|
437
|
|
|
if (!$compare) { |
|
438
|
|
|
return $this->_normalize($min); |
|
|
|
|
|
|
439
|
|
|
} elseif ($compare < 0) { |
|
440
|
|
|
// if $min is bigger then $max, swap $min and $max |
|
441
|
|
|
$temp = $max; |
|
442
|
|
|
$max = $min; |
|
443
|
|
|
$min = $temp; |
|
444
|
|
|
} |
|
445
|
|
|
|
|
446
|
|
|
static $one; |
|
447
|
|
|
if (!isset($one)) { |
|
448
|
|
|
$one = new static(1); |
|
449
|
|
|
} |
|
450
|
|
|
|
|
451
|
|
|
$max = $max->subtract($min->subtract($one)); |
|
452
|
|
|
$size = strlen(ltrim($max->toBytes(), chr(0))); |
|
453
|
|
|
|
|
454
|
|
|
/* |
|
455
|
|
|
doing $random % $max doesn't work because some numbers will be more likely to occur than others. |
|
456
|
|
|
eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 |
|
457
|
|
|
would produce 5 whereas the only value of random that could produce 139 would be 139. ie. |
|
458
|
|
|
not all numbers would be equally likely. some would be more likely than others. |
|
459
|
|
|
|
|
460
|
|
|
creating a whole new random number until you find one that is within the range doesn't work |
|
461
|
|
|
because, for sufficiently small ranges, the likelihood that you'd get a number within that range |
|
462
|
|
|
would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability |
|
463
|
|
|
would be pretty high that $random would be greater than $max. |
|
464
|
|
|
|
|
465
|
|
|
phpseclib works around this using the technique described here: |
|
466
|
|
|
|
|
467
|
|
|
http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string |
|
468
|
|
|
*/ |
|
469
|
|
|
$random_max = new static(chr(1).str_repeat("\0", $size), 256); |
|
470
|
|
|
$random = self::_random_number_helper($size); |
|
471
|
|
|
|
|
472
|
|
|
list($max_multiple) = $random_max->divide($max); |
|
473
|
|
|
$max_multiple = $max_multiple->multiply($max); |
|
474
|
|
|
|
|
475
|
|
|
while ($random->compare($max_multiple) >= 0) { |
|
476
|
|
|
$random = $random->subtract($max_multiple); |
|
477
|
|
|
$random_max = $random_max->subtract($max_multiple); |
|
478
|
|
|
$random = $random->bitwise_leftShift(8); |
|
479
|
|
|
$random = $random->add(self::_random_number_helper(1)); |
|
480
|
|
|
$random_max = $random_max->bitwise_leftShift(8); |
|
481
|
|
|
list($max_multiple) = $random_max->divide($max); |
|
482
|
|
|
$max_multiple = $max_multiple->multiply($max); |
|
483
|
|
|
} |
|
484
|
|
|
list(, $random) = $random->divide($max); |
|
485
|
|
|
|
|
486
|
|
|
return $random->add($min); |
|
487
|
|
|
} |
|
488
|
|
|
|
|
489
|
|
|
/** |
|
490
|
|
|
* Normalize. |
|
491
|
|
|
* |
|
492
|
|
|
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
|
493
|
|
|
* |
|
494
|
|
|
* @param \Jose\Util\BigInteger $result |
|
495
|
|
|
* |
|
496
|
|
|
* @return \Jose\Util\BigInteger |
|
497
|
|
|
*/ |
|
498
|
|
|
private function _normalize($result) |
|
499
|
|
|
{ |
|
500
|
|
|
return $result; |
|
501
|
|
|
} |
|
502
|
|
|
} |
|
503
|
|
|
|
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..