Complex classes like BigInteger often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes. You can also have a look at the cohesion graph to spot any un-connected, or weakly-connected components.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use BigInteger, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
14 | final class BigInteger |
||
15 | { |
||
16 | /** |
||
17 | * Holds the BigInteger's value. |
||
18 | * |
||
19 | * @var resource |
||
20 | */ |
||
21 | private $value; |
||
22 | |||
23 | /** |
||
24 | * Holds the BigInteger's magnitude. |
||
25 | * |
||
26 | * @var bool |
||
27 | */ |
||
28 | private $is_negative = false; |
||
29 | |||
30 | /** |
||
31 | * Precision. |
||
32 | */ |
||
33 | private $precision = -1; |
||
34 | |||
35 | /** |
||
36 | * Precision Bitmask. |
||
37 | */ |
||
38 | private $bitmask = false; |
||
39 | |||
40 | /** |
||
41 | * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers. |
||
42 | * |
||
43 | * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using |
||
44 | * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. |
||
45 | * |
||
46 | * Here's an example: |
||
47 | * <code> |
||
48 | * <?php |
||
49 | * $a = new \Jose\Util\in base-16 |
||
50 | * |
||
51 | * echo $a->toString(); // outputs 50 |
||
52 | * ?> |
||
53 | * </code> |
||
54 | * |
||
55 | * @param $x base-10 number or base-$base number if $base set. |
||
56 | * @param int $base |
||
57 | */ |
||
58 | public function __construct($x = 0, $base = 10) |
||
153 | |||
154 | /** |
||
155 | * Converts a BigInteger to a byte string (eg. base-256). |
||
156 | * |
||
157 | * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're |
||
158 | * saved as two's compliment. |
||
159 | * |
||
160 | * Here's an example: |
||
161 | * <code> |
||
162 | * <?php |
||
163 | * $a = new \Jose\Util\ger('65'); |
||
164 | * |
||
165 | * echo $a->toBytes(); // outputs chr(65) |
||
166 | * ?> |
||
167 | * </code> |
||
168 | * |
||
169 | * @param bool $twos_compliment |
||
170 | * |
||
171 | * @return string |
||
172 | * |
||
173 | */ |
||
174 | public function toBytes($twos_compliment = false) |
||
208 | |||
209 | /** |
||
210 | * Adds two BigIntegers. |
||
211 | * |
||
212 | * Here's an example: |
||
213 | * <code> |
||
214 | * <?php |
||
215 | * $a = new \Jose\Util\ger('10'); |
||
216 | * $b = new \Jose\Util\ger('20'); |
||
217 | * |
||
218 | * $c = $a->add($b); |
||
219 | * |
||
220 | * echo $c->toString(); // outputs 30 |
||
221 | * ?> |
||
222 | * </code> |
||
223 | * |
||
224 | * @param \Jose\Util\BigInteger $y |
||
225 | * |
||
226 | * @return \Jose\Util\BigInteger |
||
227 | * |
||
228 | */ |
||
229 | public function add(BigInteger $y) |
||
236 | |||
237 | /** |
||
238 | * Subtracts two BigIntegers. |
||
239 | * |
||
240 | * Here's an example: |
||
241 | * <code> |
||
242 | * <?php |
||
243 | * $a = new \Jose\Util\ger('10'); |
||
244 | * $b = new \Jose\Util\ger('20'); |
||
245 | * |
||
246 | * $c = $a->subtract($b); |
||
247 | * |
||
248 | * echo $c->toString(); // outputs -10 |
||
249 | * ?> |
||
250 | * </code> |
||
251 | * |
||
252 | * @param \Jose\Util\BigInteger $y |
||
253 | * |
||
254 | * @return \Jose\Util\BigInteger |
||
255 | * |
||
256 | */ |
||
257 | public function subtract(BigInteger $y) |
||
264 | |||
265 | /** |
||
266 | * Multiplies two BigIntegers. |
||
267 | * |
||
268 | * Here's an example: |
||
269 | * <code> |
||
270 | * <?php |
||
271 | * $a = new \Jose\Util\ger('10'); |
||
272 | * $b = new \Jose\Util\ger('20'); |
||
273 | * |
||
274 | * $c = $a->multiply($b); |
||
275 | * |
||
276 | * echo $c->toString(); // outputs 200 |
||
277 | * ?> |
||
278 | * </code> |
||
279 | * |
||
280 | * @param \Jose\Util\BigInteger $x |
||
281 | * |
||
282 | * @return \Jose\Util\BigInteger |
||
283 | */ |
||
284 | public function multiply(BigInteger $x) |
||
291 | |||
292 | /** |
||
293 | * Divides two BigIntegers. |
||
294 | * |
||
295 | * Returns an array whose first element contains the quotient and whose second element contains the |
||
296 | * "common residue". If the remainder would be positive, the "common residue" and the remainder are the |
||
297 | * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder |
||
298 | * and the divisor (basically, the "common residue" is the first positive modulo). |
||
299 | * |
||
300 | * Here's an example: |
||
301 | * <code> |
||
302 | * <?php |
||
303 | * $a = new \Jose\Util\ger('10'); |
||
304 | * $b = new \Jose\Util\ger('20'); |
||
305 | * |
||
306 | * list($quotient, $remainder) = $a->divide($b); |
||
307 | * |
||
308 | * echo $quotient->toString(); // outputs 0 |
||
309 | * echo "\r\n"; |
||
310 | * echo $remainder->toString(); // outputs 10 |
||
311 | * ?> |
||
312 | * </code> |
||
313 | * @param \Jose\Util\BigInteger $y |
||
314 | * |
||
315 | * @return \Jose\Util\BigInteger[] |
||
316 | * |
||
317 | */ |
||
318 | public function divide(BigInteger $y) |
||
331 | |||
332 | /** |
||
333 | * Performs modular exponentiation. |
||
334 | * |
||
335 | * Here's an example: |
||
336 | * <code> |
||
337 | * <?php |
||
338 | * $a = new \Jose\Util\ger('10'); |
||
339 | * $b = new \Jose\Util\ger('20'); |
||
340 | * $c = new \Jose\Util\ger('30'); |
||
341 | * |
||
342 | * $c = $a->modPow($b, $c); |
||
343 | * |
||
344 | * echo $c->toString(); // outputs 10 |
||
345 | * ?> |
||
346 | * </code> |
||
347 | * |
||
348 | * @param \Jose\Util\BigInteger $e |
||
349 | * @param \Jose\Util\BigInteger $n |
||
350 | * |
||
351 | * @return \Jose\Util\BigInteger |
||
352 | * |
||
353 | * and although the approach involving repeated squaring does vastly better, it, too, is impractical |
||
354 | * for our purposes. The reason being that division - by far the most complicated and time-consuming |
||
355 | * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. |
||
356 | * |
||
357 | * Modular reductions resolve this issue. Although an individual modular reduction takes more time |
||
358 | * then an individual division, when performed in succession (with the same modulo), they're a lot faster. |
||
359 | * |
||
360 | * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, |
||
361 | * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the |
||
362 | * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because |
||
363 | * the product of two odd numbers is odd), but what about when RSA isn't used? |
||
364 | * |
||
365 | * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a |
||
366 | * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the |
||
367 | * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, |
||
368 | * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and |
||
369 | * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. |
||
370 | * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. |
||
371 | */ |
||
372 | public function modPow(BigInteger $e, BigInteger $n) |
||
392 | |||
393 | /** |
||
394 | * Calculates modular inverses. |
||
395 | * |
||
396 | * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. |
||
397 | * |
||
398 | * Here's an example: |
||
399 | * <code> |
||
400 | * <?php |
||
401 | * $a = new \Jose\Util\teger(30); |
||
402 | * $b = new \Jose\Util\teger(17); |
||
403 | * |
||
404 | * $c = $a->modInverse($b); |
||
405 | * echo $c->toString(); // outputs 4 |
||
406 | * |
||
407 | * echo "\r\n"; |
||
408 | * |
||
409 | * $d = $a->multiply($c); |
||
410 | * list(, $d) = $d->divide($b); |
||
411 | * echo $d; // outputs 1 (as per the definition of modular inverse) |
||
412 | * ?> |
||
413 | * </code> |
||
414 | * |
||
415 | * @param \Jose\Util\BigInteger $n |
||
416 | * |
||
417 | * @return \Jose\Util\BigInteger|bool |
||
418 | * |
||
419 | */ |
||
420 | public function modInverse(BigInteger $n) |
||
427 | |||
428 | /** |
||
429 | * Absolute value. |
||
430 | * |
||
431 | * @return \Jose\Util\BigInteger |
||
432 | */ |
||
433 | public function abs() |
||
441 | |||
442 | /** |
||
443 | * Compares two numbers. |
||
444 | * |
||
445 | * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is |
||
446 | * demonstrated thusly: |
||
447 | * |
||
448 | * $x > $y: $x->compare($y) > 0 |
||
449 | * $x < $y: $x->compare($y) < 0 |
||
450 | * $x == $y: $x->compare($y) == 0 |
||
451 | * |
||
452 | * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). |
||
453 | * |
||
454 | * @param \Jose\Util\BigInteger $y |
||
455 | * |
||
456 | * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. |
||
457 | * |
||
458 | */ |
||
459 | public function compare(BigInteger $y) |
||
463 | |||
464 | /** |
||
465 | * Logical Left Shift. |
||
466 | * |
||
467 | * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. |
||
468 | * |
||
469 | * @param int $shift |
||
470 | * |
||
471 | * @return \Jose\Util\BigInteger |
||
472 | * |
||
473 | */ |
||
474 | public function bitwise_leftShift($shift) |
||
488 | |||
489 | /** |
||
490 | * Generates a random BigInteger. |
||
491 | * |
||
492 | * Byte length is equal to $length. Uses \phpseclib\Crypt\Random if it's loaded and mt_rand if it's not. |
||
493 | * |
||
494 | * @param int $size |
||
495 | * |
||
496 | * @return \Jose\Util\BigInteger |
||
497 | */ |
||
498 | private static function _random_number_helper($size) |
||
502 | |||
503 | /** |
||
504 | * Generate a random number. |
||
505 | * |
||
506 | * Returns a random number between $min and $max where $min and $max |
||
507 | * can be defined using one of the two methods: |
||
508 | * |
||
509 | * BigInteger::random($min, $max) |
||
510 | * BigInteger::random($max, $min) |
||
511 | * |
||
512 | * @param \Jose\Util\BigInteger $min |
||
513 | * @param \Jose\Util\BigInteger $max |
||
514 | * |
||
515 | * @return \Jose\Util\BigInteger |
||
516 | */ |
||
517 | public static function random(BigInteger $min, BigInteger $max) |
||
572 | |||
573 | /** |
||
574 | * Normalize. |
||
575 | * |
||
576 | * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision |
||
577 | * |
||
578 | * @param \Jose\Util\BigInteger $result |
||
579 | * |
||
580 | * @return \Jose\Util\BigInteger |
||
581 | */ |
||
582 | private function _normalize($result) |
||
593 | } |
||
594 |
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..