1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/* |
4
|
|
|
* The MIT License (MIT) |
5
|
|
|
* |
6
|
|
|
* Copyright (c) 2014-2017 Spomky-Labs |
7
|
|
|
* |
8
|
|
|
* This software may be modified and distributed under the terms |
9
|
|
|
* of the MIT license. See the LICENSE file for details. |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace Jose\Component\Core\Util\Ecc; |
13
|
|
|
|
14
|
|
|
/** |
15
|
|
|
* ********************************************************************* |
16
|
|
|
* Copyright (C) 2012 Matyas Danter. |
17
|
|
|
* |
18
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining |
19
|
|
|
* a copy of this software and associated documentation files (the "Software"), |
20
|
|
|
* to deal in the Software without restriction, including without limitation |
21
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense, |
22
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the |
23
|
|
|
* Software is furnished to do so, subject to the following conditions: |
24
|
|
|
* |
25
|
|
|
* The above copyright notice and this permission notice shall be included |
26
|
|
|
* in all copies or substantial portions of the Software. |
27
|
|
|
* |
28
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
29
|
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
30
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
31
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES |
32
|
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
33
|
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
34
|
|
|
* OTHER DEALINGS IN THE SOFTWARE. |
35
|
|
|
* *********************************************************************** |
36
|
|
|
*/ |
37
|
|
|
|
38
|
|
|
/** |
39
|
|
|
* This class is where the elliptic curve arithmetic takes place. |
40
|
|
|
* The important methods are: |
41
|
|
|
* - add: adds two points according to ec arithmetic |
42
|
|
|
* - double: doubles a point on the ec field mod p |
43
|
|
|
* - mul: uses double and add to achieve multiplication The rest of the methods are there for supporting the ones above. |
44
|
|
|
*/ |
45
|
|
|
final class Point |
46
|
|
|
{ |
47
|
|
|
/** |
48
|
|
|
* @var \GMP |
49
|
|
|
*/ |
50
|
|
|
private $x; |
51
|
|
|
|
52
|
|
|
/** |
53
|
|
|
* @var \GMP |
54
|
|
|
*/ |
55
|
|
|
private $y; |
56
|
|
|
|
57
|
|
|
/** |
58
|
|
|
* @var \GMP |
59
|
|
|
*/ |
60
|
|
|
private $order; |
61
|
|
|
|
62
|
|
|
/** |
63
|
|
|
* @var bool |
64
|
|
|
*/ |
65
|
|
|
private $infinity = false; |
66
|
|
|
|
67
|
|
|
/** |
68
|
|
|
* Initialize a new instance. |
69
|
|
|
* |
70
|
|
|
* @param \GMP $x |
71
|
|
|
* @param \GMP $y |
72
|
|
|
* @param \GMP $order |
73
|
|
|
* @param bool $infinity |
74
|
|
|
* |
75
|
|
|
* @throws \RuntimeException when either the curve does not contain the given coordinates or |
76
|
|
|
* when order is not null and P(x, y) * order is not equal to infinity |
77
|
|
|
*/ |
78
|
|
|
private function __construct(\GMP $x, \GMP $y, \GMP $order, bool $infinity = false) |
79
|
|
|
{ |
80
|
|
|
$this->x = $x; |
81
|
|
|
$this->y = $y; |
82
|
|
|
$this->order = null === $order ? gmp_init(0, 10) : $order; |
83
|
|
|
$this->infinity = $infinity; |
84
|
|
|
} |
85
|
|
|
|
86
|
|
|
/** |
87
|
|
|
* @param \GMP $x |
88
|
|
|
* @param \GMP $y |
89
|
|
|
* @param \GMP|null $order |
90
|
|
|
* |
91
|
|
|
* @return Point |
92
|
|
|
*/ |
93
|
|
|
public static function create(\GMP $x, \GMP $y, ?\GMP $order = null): Point |
94
|
|
|
{ |
95
|
|
|
return new self($x, $y, null === $order ? gmp_init(0, 10) : $order); |
96
|
|
|
} |
97
|
|
|
|
98
|
|
|
/** |
99
|
|
|
* @return Point |
100
|
|
|
*/ |
101
|
|
|
public static function infinity(): Point |
102
|
|
|
{ |
103
|
|
|
$zero = gmp_init(0, 10); |
104
|
|
|
|
105
|
|
|
return new self($zero, $zero, $zero, true); |
106
|
|
|
} |
107
|
|
|
|
108
|
|
|
/** |
109
|
|
|
* @return bool |
110
|
|
|
*/ |
111
|
|
|
public function isInfinity(): bool |
112
|
|
|
{ |
113
|
|
|
return $this->infinity; |
114
|
|
|
} |
115
|
|
|
|
116
|
|
|
/** |
117
|
|
|
* @return \GMP |
118
|
|
|
*/ |
119
|
|
|
public function getOrder(): \GMP |
120
|
|
|
{ |
121
|
|
|
return $this->order; |
122
|
|
|
} |
123
|
|
|
|
124
|
|
|
/** |
125
|
|
|
* @return \GMP |
126
|
|
|
*/ |
127
|
|
|
public function getX(): \GMP |
128
|
|
|
{ |
129
|
|
|
return $this->x; |
130
|
|
|
} |
131
|
|
|
|
132
|
|
|
/** |
133
|
|
|
* @return \GMP |
134
|
|
|
*/ |
135
|
|
|
public function getY(): \GMP |
136
|
|
|
{ |
137
|
|
|
return $this->y; |
138
|
|
|
} |
139
|
|
|
|
140
|
|
|
/** |
141
|
|
|
* @param Point $a |
142
|
|
|
* @param Point $b |
143
|
|
|
* @param int $cond |
144
|
|
|
*/ |
145
|
|
|
public static function cswap(Point $a, Point $b, int $cond) |
146
|
|
|
{ |
147
|
|
|
self::cswapGMP($a->x, $b->x, $cond); |
148
|
|
|
self::cswapGMP($a->y, $b->y, $cond); |
149
|
|
|
self::cswapGMP($a->order, $b->order, $cond); |
150
|
|
|
self::cswapBoolean($a->infinity, $b->infinity, $cond); |
151
|
|
|
} |
152
|
|
|
|
153
|
|
|
/** |
154
|
|
|
* @param $a |
155
|
|
|
* @param $b |
156
|
|
|
* @param $cond |
157
|
|
|
*/ |
158
|
|
|
private static function cswapBoolean(bool &$a, bool &$b, int $cond) |
159
|
|
|
{ |
160
|
|
|
$sa = gmp_init(intval($a), 10); |
161
|
|
|
$sb = gmp_init(intval($b), 10); |
162
|
|
|
|
163
|
|
|
self::cswapGMP($sa, $sb, $cond); |
164
|
|
|
|
165
|
|
|
$a = (bool) gmp_strval($sa, 10); |
166
|
|
|
$b = (bool) gmp_strval($sb, 10); |
167
|
|
|
} |
168
|
|
|
|
169
|
|
|
/** |
170
|
|
|
* @param \GMP $sa |
171
|
|
|
* @param \GMP $sb |
172
|
|
|
* @param int $cond |
173
|
|
|
*/ |
174
|
|
|
private static function cswapGMP(\GMP &$sa, \GMP &$sb, int $cond) |
175
|
|
|
{ |
176
|
|
|
$size = max(mb_strlen(gmp_strval($sa, 2), '8bit'), mb_strlen(gmp_strval($sb, 2), '8bit')); |
177
|
|
|
$mask = 1 - intval($cond); |
178
|
|
|
$mask = str_pad('', $size, $mask, STR_PAD_LEFT); |
179
|
|
|
$mask = gmp_init($mask, 2); |
180
|
|
|
$taA = GmpMath::bitwiseAnd($sa, $mask); |
181
|
|
|
$taB = GmpMath::bitwiseAnd($sb, $mask); |
182
|
|
|
$sa = GmpMath::bitwiseXor(GmpMath::bitwiseXor($sa, $sb), $taB); |
183
|
|
|
$sb = GmpMath::bitwiseXor(GmpMath::bitwiseXor($sa, $sb), $taA); |
184
|
|
|
$sa = GmpMath::bitwiseXor(GmpMath::bitwiseXor($sa, $sb), $taB); |
185
|
|
|
} |
186
|
|
|
} |
187
|
|
|
|