1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from sklearn.base import BaseEstimator |
7
|
|
|
from sklearn.metrics import check_scoring |
8
|
|
|
from sklearn.utils.validation import indexable, _check_method_params |
9
|
|
|
|
10
|
|
|
from hyperactive import Hyperactive |
11
|
|
|
|
12
|
|
|
from .objective_function_adapter import ObjectiveFunctionAdapter |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class HyperactiveSearchCV(BaseEstimator): |
16
|
|
|
_required_parameters = ["estimator", "optimizer", "params_config"] |
17
|
|
|
|
18
|
|
|
def __init__( |
19
|
|
|
self, |
20
|
|
|
estimator, |
21
|
|
|
optimizer, |
22
|
|
|
params_config, |
23
|
|
|
n_iter=100, |
24
|
|
|
*, |
25
|
|
|
scoring=None, |
26
|
|
|
n_jobs=1, |
27
|
|
|
random_state=None, |
28
|
|
|
refit=True, |
29
|
|
|
cv=None, |
30
|
|
|
): |
31
|
|
|
self.estimator = estimator |
32
|
|
|
self.optimizer = optimizer |
33
|
|
|
self.params_config = params_config |
34
|
|
|
self.n_iter = n_iter |
35
|
|
|
self.scoring = scoring |
36
|
|
|
self.n_jobs = n_jobs |
37
|
|
|
self.random_state = random_state |
38
|
|
|
self.refit = refit |
39
|
|
|
self.cv = cv |
40
|
|
|
|
41
|
|
|
def fit(self, X, y, **params): |
42
|
|
|
X, y = indexable(X, y) |
43
|
|
|
X, y = self._validate_data(X, y) |
44
|
|
|
|
45
|
|
|
params = _check_method_params(X, params=params) |
46
|
|
|
self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) |
47
|
|
|
|
48
|
|
|
objective_function_adapter = ObjectiveFunctionAdapter( |
49
|
|
|
self.estimator, |
50
|
|
|
) |
51
|
|
|
objective_function_adapter.add_dataset(X, y) |
52
|
|
|
objective_function_adapter.add_validation(self.scorer_, self.cv) |
53
|
|
|
|
54
|
|
|
hyper = Hyperactive(verbosity=False) |
55
|
|
|
hyper.add_search( |
56
|
|
|
objective_function_adapter.objective_function, |
57
|
|
|
search_space=self.params_config, |
58
|
|
|
optimizer=self.optimizer, |
59
|
|
|
n_iter=self.n_iter, |
60
|
|
|
n_jobs=self.n_jobs, |
61
|
|
|
random_state=self.random_state, |
62
|
|
|
) |
63
|
|
|
hyper.run() |
64
|
|
|
|
65
|
|
|
return self |
66
|
|
|
|