| Total Complexity | 2 |
| Total Lines | 39 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 2 | import numpy as np |
||
| 3 | |||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | from ._parametrize import optimizers |
||
| 7 | |||
| 8 | |||
| 9 | def objective_function(opt): |
||
| 10 | score = -opt["x1"] * opt["x1"] |
||
| 11 | return score |
||
| 12 | |||
| 13 | |||
| 14 | search_space = {"x1": list(np.arange(-10, 11, 1))} |
||
| 15 | |||
| 16 | |||
| 17 | @pytest.mark.parametrize(*optimizers) |
||
| 18 | def test_memory_0(Optimizer): |
||
| 19 | optimizer = Optimizer() |
||
| 20 | |||
| 21 | n_iter = 30 |
||
| 22 | |||
| 23 | hyper = Hyperactive() |
||
| 24 | hyper.add_search( |
||
| 25 | objective_function, |
||
| 26 | search_space, |
||
| 27 | optimizer=optimizer, |
||
| 28 | n_iter=n_iter, |
||
| 29 | n_jobs=2, |
||
| 30 | ) |
||
| 31 | hyper.add_search( |
||
| 32 | objective_function, |
||
| 33 | search_space, |
||
| 34 | optimizer=optimizer, |
||
| 35 | n_iter=n_iter, |
||
| 36 | n_jobs=2, |
||
| 37 | ) |
||
| 38 | hyper.run() |
||
| 39 |