1
|
|
|
import pytest |
2
|
|
|
import numpy as np |
3
|
|
|
|
4
|
|
|
from tqdm import tqdm |
5
|
|
|
from ._parametrize import optimizers |
6
|
|
|
from hyperactive.search_space import SearchSpace |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
def objective_function(opt): |
10
|
|
|
score = -opt["x1"] * opt["x1"] |
11
|
|
|
return score |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
def objective_function_m5(opt): |
15
|
|
|
score = -(opt["x1"] - 5) * (opt["x1"] - 5) |
16
|
|
|
return score |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def objective_function_p5(opt): |
20
|
|
|
score = -(opt["x1"] + 5) * (opt["x1"] + 5) |
21
|
|
|
return score |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
search_space_0 = {"x1": list(np.arange(-100, 101, 1))} |
25
|
|
|
search_space_1 = {"x1": list(np.arange(0, 101, 1))} |
26
|
|
|
search_space_2 = {"x1": list(np.arange(-100, 1, 1))} |
27
|
|
|
|
28
|
|
|
search_space_3 = {"x1": list(np.arange(-10, 11, 0.1))} |
29
|
|
|
search_space_4 = {"x1": list(np.arange(0, 11, 0.1))} |
30
|
|
|
search_space_5 = {"x1": list(np.arange(-10, 1, 0.1))} |
31
|
|
|
|
32
|
|
|
search_space_6 = {"x1": list(np.arange(-0.0000000003, 0.0000000003, 0.0000000001))} |
33
|
|
|
search_space_7 = {"x1": list(np.arange(0, 0.0000000003, 0.0000000001))} |
34
|
|
|
search_space_8 = {"x1": list(np.arange(-0.0000000003, 0, 0.0000000001))} |
35
|
|
|
|
36
|
|
|
objective_para = ( |
37
|
|
|
"objective", |
38
|
|
|
[ |
39
|
|
|
(objective_function), |
40
|
|
|
(objective_function_m5), |
41
|
|
|
(objective_function_p5), |
42
|
|
|
], |
43
|
|
|
) |
44
|
|
|
|
45
|
|
|
search_space_para = ( |
46
|
|
|
"search_space", |
47
|
|
|
[ |
48
|
|
|
(search_space_0), |
49
|
|
|
(search_space_1), |
50
|
|
|
(search_space_2), |
51
|
|
|
(search_space_3), |
52
|
|
|
(search_space_4), |
53
|
|
|
(search_space_5), |
54
|
|
|
(search_space_6), |
55
|
|
|
(search_space_7), |
56
|
|
|
(search_space_8), |
57
|
|
|
], |
58
|
|
|
) |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
@pytest.mark.parametrize(*objective_para) |
62
|
|
|
@pytest.mark.parametrize(*search_space_para) |
63
|
|
|
@pytest.mark.parametrize(*optimizers) |
64
|
|
|
def test_gfo_opt_wrapper_0(Optimizer, search_space, objective): |
65
|
|
|
search_space = search_space |
66
|
|
|
objective_function = objective |
67
|
|
|
|
68
|
|
|
n_iter = 10 |
69
|
|
|
s_space = SearchSpace(search_space) |
70
|
|
|
|
71
|
|
|
initialize = {"vertices": 2} |
72
|
|
|
pass_through = {} |
73
|
|
|
callbacks = None |
74
|
|
|
catch = None |
75
|
|
|
max_score = None |
76
|
|
|
early_stopping = None |
77
|
|
|
random_state = None |
78
|
|
|
memory = None |
79
|
|
|
memory_warm_start = None |
80
|
|
|
verbosity = ["progress_bar", "print_results", "print_times"] |
81
|
|
|
|
82
|
|
|
opt = Optimizer() |
83
|
|
|
|
84
|
|
|
opt.setup_search( |
85
|
|
|
objective_function=objective_function, |
86
|
|
|
s_space=s_space, |
87
|
|
|
n_iter=n_iter, |
88
|
|
|
initialize=initialize, |
89
|
|
|
pass_through=pass_through, |
90
|
|
|
callbacks=callbacks, |
91
|
|
|
catch=catch, |
92
|
|
|
max_score=max_score, |
93
|
|
|
early_stopping=early_stopping, |
94
|
|
|
random_state=random_state, |
95
|
|
|
memory=memory, |
96
|
|
|
memory_warm_start=memory_warm_start, |
97
|
|
|
verbosity=verbosity, |
98
|
|
|
) |
99
|
|
|
opt.max_time = None |
100
|
|
|
opt.search(nth_process=0, p_bar=tqdm(total=n_iter)) |
101
|
|
|
|
102
|
|
|
assert opt.best_score == objective_function(opt.best_para) |
103
|
|
|
|