1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from .core import Core |
7
|
|
|
from .opt_args import Arguments |
8
|
|
|
from . import ( |
9
|
|
|
HillClimbingOptimizer, |
10
|
|
|
StochasticHillClimbingOptimizer, |
11
|
|
|
TabuOptimizer, |
12
|
|
|
RandomSearchOptimizer, |
13
|
|
|
RandomRestartHillClimbingOptimizer, |
14
|
|
|
RandomAnnealingOptimizer, |
15
|
|
|
SimulatedAnnealingOptimizer, |
16
|
|
|
StochasticTunnelingOptimizer, |
17
|
|
|
ParallelTemperingOptimizer, |
18
|
|
|
ParticleSwarmOptimizer, |
19
|
|
|
EvolutionStrategyOptimizer, |
20
|
|
|
BayesianOptimizer, |
21
|
|
|
) |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class Hyperactive: |
25
|
|
|
def __init__(self, *args, **kwargs): |
26
|
|
|
|
27
|
|
|
""" |
28
|
|
|
|
29
|
|
|
Parameters |
30
|
|
|
---------- |
31
|
|
|
|
32
|
|
|
search_config: dict |
33
|
|
|
A dictionary providing the model and hyperparameter search space for the |
34
|
|
|
optimization process. |
35
|
|
|
n_iter: int |
36
|
|
|
The number of iterations the optimizer performs. |
37
|
|
|
metric: string, optional (default: "accuracy") |
38
|
|
|
The metric the model is evaluated by. |
39
|
|
|
n_jobs: int, optional (default: 1) |
40
|
|
|
The number of searches to run in parallel. |
41
|
|
|
cv: int, optional (default: 3) |
42
|
|
|
The number of folds for the cross validation. |
43
|
|
|
verbosity: int, optional (default: 1) |
44
|
|
|
Verbosity level. 1 prints out warm_start points and their scores. |
45
|
|
|
random_state: int, optional (default: None) |
46
|
|
|
Sets the random seed. |
47
|
|
|
warm_start: dict, optional (default: False) |
48
|
|
|
Dictionary that definies a start point for the optimizer. |
49
|
|
|
memory: bool, optional (default: True) |
50
|
|
|
A memory, that saves the evaluation during the optimization to save time when |
51
|
|
|
optimizer returns to position. |
52
|
|
|
scatter_init: int, optional (default: False) |
53
|
|
|
Defines the number n of random positions that should be evaluated with 1/n the |
54
|
|
|
training data, to find a better initial position. |
55
|
|
|
|
56
|
|
|
Returns |
57
|
|
|
------- |
58
|
|
|
None |
59
|
|
|
|
60
|
|
|
""" |
61
|
|
|
|
62
|
|
|
optimizer_dict = { |
63
|
|
|
"HillClimbing": HillClimbingOptimizer, |
64
|
|
|
"StochasticHillClimbing": StochasticHillClimbingOptimizer, |
65
|
|
|
"TabuSearch": TabuOptimizer, |
66
|
|
|
"RandomSearch": RandomSearchOptimizer, |
67
|
|
|
"RandomRestartHillClimbing": RandomRestartHillClimbingOptimizer, |
68
|
|
|
"RandomAnnealing": RandomAnnealingOptimizer, |
69
|
|
|
"SimulatedAnnealing": SimulatedAnnealingOptimizer, |
70
|
|
|
"StochasticTunneling": StochasticTunnelingOptimizer, |
71
|
|
|
"ParallelTempering": ParallelTemperingOptimizer, |
72
|
|
|
"ParticleSwarm": ParticleSwarmOptimizer, |
73
|
|
|
"EvolutionStrategy": EvolutionStrategyOptimizer, |
74
|
|
|
"Bayesian": BayesianOptimizer, |
75
|
|
|
} |
76
|
|
|
|
77
|
|
|
_core_ = Core(*args, **kwargs) |
78
|
|
|
_arg_ = Arguments(**_core_.opt_para) |
79
|
|
|
|
80
|
|
|
optimizer_class = optimizer_dict[_core_.optimizer] |
81
|
|
|
self._optimizer_ = optimizer_class(_core_, _arg_) |
82
|
|
|
|
83
|
|
|
self.pos_list = self._optimizer_.pos_list |
84
|
|
|
self.score_list = self._optimizer_.score_list |
85
|
|
|
|
86
|
|
|
def search(self, X, y): |
87
|
|
|
"""Public method for starting the search with the training data (X, y) |
88
|
|
|
|
89
|
|
|
Parameters |
90
|
|
|
---------- |
91
|
|
|
X : array-like or sparse matrix of shape = [n_samples, n_features] |
92
|
|
|
|
93
|
|
|
y : array-like, shape = [n_samples] or [n_samples, n_outputs] |
94
|
|
|
|
95
|
|
|
Returns |
96
|
|
|
------- |
97
|
|
|
None |
98
|
|
|
""" |
99
|
|
|
self._optimizer_._fit(X, y) |
100
|
|
|
self.score_best = self._optimizer_.score_best |
101
|
|
|
|
102
|
|
|
def get_results(self): |
103
|
|
|
return self._optimizer_.results |
104
|
|
|
|
105
|
|
|
def save_report(self): |
106
|
|
|
pass |
107
|
|
|
|