|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
from ..search_space import SearchSpace |
|
6
|
|
|
from ..model import Model |
|
7
|
|
|
from ..init_position import InitSearchPosition |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class Candidate: |
|
11
|
|
|
def __init__(self, nth_process, _config_): |
|
12
|
|
|
self.search_config = _config_.search_config |
|
13
|
|
|
self.memory = _config_.memory |
|
14
|
|
|
|
|
15
|
|
|
self._score_best = -1000 |
|
16
|
|
|
self.pos_best = None |
|
17
|
|
|
|
|
18
|
|
|
self.model = None |
|
19
|
|
|
self._space_ = SearchSpace(_config_) |
|
20
|
|
|
|
|
21
|
|
|
self.nth_process = nth_process |
|
22
|
|
|
self.func_ = list(_config_.search_config.keys())[0] |
|
23
|
|
|
|
|
24
|
|
|
self._space_.create_kerasSearchSpace() |
|
25
|
|
|
self._model_ = Model(_config_) |
|
26
|
|
|
|
|
27
|
|
|
self._init_ = InitSearchPosition( |
|
28
|
|
|
self._space_, self._model_, _config_.warm_start, _config_.scatter_init |
|
29
|
|
|
) |
|
30
|
|
|
|
|
31
|
|
|
def create_start_point(self, para): |
|
32
|
|
|
start_point = {} |
|
33
|
|
|
|
|
34
|
|
|
temp_dict = {} |
|
35
|
|
|
for para_key in para: |
|
36
|
|
|
temp_dict[para_key] = [para[para_key]] |
|
37
|
|
|
|
|
38
|
|
|
start_point[self.func_] = temp_dict |
|
39
|
|
|
|
|
40
|
|
|
return start_point |
|
41
|
|
|
|
|
42
|
|
|
def _get_warm_start(self): |
|
43
|
|
|
para_best = self._space_.pos2para(self.pos_best) |
|
44
|
|
|
warm_start = self.create_start_point(para_best) |
|
45
|
|
|
|
|
46
|
|
|
return warm_start |
|
47
|
|
|
|
|
48
|
|
|
@property |
|
49
|
|
|
def score_best(self): |
|
50
|
|
|
return self._score_best |
|
51
|
|
|
|
|
52
|
|
|
@score_best.setter |
|
53
|
|
|
def score_best(self, value): |
|
54
|
|
|
# self.model_best = self.model |
|
55
|
|
|
self._score_best = value |
|
56
|
|
|
|
|
57
|
|
|
def eval_pos(self, pos, X, y, force_eval=False): |
|
58
|
|
|
pos_str = pos.tostring() |
|
59
|
|
|
|
|
60
|
|
|
if pos_str in self._space_.memory and self.memory and not force_eval: |
|
61
|
|
|
return self._space_.memory[pos_str] |
|
62
|
|
|
else: |
|
63
|
|
|
para = self._space_.pos2para(pos) |
|
64
|
|
|
score, self.model = self._model_.train_model(para, X, y) |
|
65
|
|
|
self._space_.memory[pos_str] = score |
|
66
|
|
|
|
|
67
|
|
|
return score |
|
68
|
|
|
|