1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numbers |
6
|
|
|
import numpy as np |
7
|
|
|
import pandas as pd |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class Converter: |
11
|
|
|
def __init__(self, search_space): |
12
|
|
|
self.search_space = search_space |
13
|
|
|
self.para_names = list(self.search_space.keys()) |
14
|
|
|
|
15
|
|
|
def value2position(self, value): |
16
|
|
|
position = [] |
17
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
18
|
|
|
pos = np.abs(value[n] - space_dim).argmin() |
19
|
|
|
position.append(pos) |
20
|
|
|
|
21
|
|
|
return np.array(position).astype(int) |
22
|
|
|
|
23
|
|
|
def value2para(self, value): |
24
|
|
|
para = {} |
25
|
|
|
for key, p_ in zip(self.para_names, value): |
26
|
|
|
para[key] = p_ |
27
|
|
|
|
28
|
|
|
return para |
29
|
|
|
|
30
|
|
|
def position2value(self, position): |
31
|
|
|
value = [] |
32
|
|
|
|
33
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
34
|
|
|
value.append(space_dim[position[n]]) |
35
|
|
|
|
36
|
|
|
return np.array(value) |
37
|
|
|
|
38
|
|
|
def positions2values(self, positions): |
39
|
|
|
values_temp = [] |
40
|
|
|
positions_np = np.array(positions) |
41
|
|
|
|
42
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
43
|
|
|
pos_1d = positions_np[:, n] |
44
|
|
|
value_ = np.take(space_dim, pos_1d, axis=0) |
45
|
|
|
values_temp.append(value_) |
46
|
|
|
|
47
|
|
|
values = list(np.array(values_temp).T) |
48
|
|
|
return values |
49
|
|
|
|
50
|
|
|
def para2value(self, para): |
51
|
|
|
value = [] |
52
|
|
|
for para_name in self.para_names: |
53
|
|
|
value.append(para[para_name]) |
54
|
|
|
|
55
|
|
|
return np.array(value) |
56
|
|
|
|
57
|
|
|
def _memory2dataframe(self, memory_dict): |
58
|
|
|
positions = [np.array(pos).astype(int) for pos in list(memory_dict.keys())] |
59
|
|
|
scores = list(memory_dict.values()) |
60
|
|
|
|
61
|
|
|
memory_positions = pd.DataFrame(positions, columns=self.para_names) |
62
|
|
|
memory_positions["score"] = scores |
63
|
|
|
|
64
|
|
|
return memory_positions |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
class HyperGradientTrafo(Converter): |
68
|
|
|
def __init__(self, search_space): |
69
|
|
|
super().__init__(search_space) |
70
|
|
|
self.search_space_values = list(self.search_space.values()) |
71
|
|
|
|
72
|
|
|
search_space_positions = {} |
73
|
|
|
for key in search_space.keys(): |
74
|
|
|
search_space_positions[key] = np.array(range(len(search_space[key]))) |
75
|
|
|
self.search_space_positions = search_space_positions |
76
|
|
|
|
77
|
|
|
""" |
78
|
|
|
self.search_space_ltm = {} |
79
|
|
|
self.data_types = {} |
80
|
|
|
for para_name in search_space.keys(): |
81
|
|
|
value0 = search_space[para_name][0] |
82
|
|
|
|
83
|
|
|
if isinstance(value0, numbers.Number): |
84
|
|
|
type0 = "number" |
85
|
|
|
search_dim_ltm = search_space[para_name] |
86
|
|
|
elif isinstance(value0, str): |
87
|
|
|
type0 = "string" |
88
|
|
|
search_dim_ltm = search_space[para_name] |
89
|
|
|
|
90
|
|
|
elif callable(value0): |
91
|
|
|
type0 = "function" |
92
|
|
|
|
93
|
|
|
search_dim_ltm = [] |
94
|
|
|
for func in list(search_space[para_name]): |
95
|
|
|
search_dim_ltm.append(func.__name__) |
96
|
|
|
|
97
|
|
|
else: |
98
|
|
|
type0 = None |
99
|
|
|
search_dim_ltm = search_space[para_name] |
100
|
|
|
|
101
|
|
|
self.data_types[para_name] = type0 |
102
|
|
|
self.search_space_ltm[para_name] = search_dim_ltm |
103
|
|
|
""" |
104
|
|
|
|
105
|
|
|
def trafo_initialize(self, initialize): |
106
|
|
|
if "warm_start" in list(initialize.keys()): |
107
|
|
|
warm_start = initialize["warm_start"] |
108
|
|
|
warm_start_gfo = [] |
109
|
|
|
for warm_start_ in warm_start: |
110
|
|
|
value = self.para2value(warm_start_) |
111
|
|
|
position = self.value2position(value) |
112
|
|
|
pos_para = self.value2para(position) |
113
|
|
|
|
114
|
|
|
warm_start_gfo.append(pos_para) |
115
|
|
|
|
116
|
|
|
initialize["warm_start"] = warm_start_gfo |
117
|
|
|
|
118
|
|
|
return initialize |
119
|
|
|
|
120
|
|
|
def get_list_positions(self, list1_values, search_dim): |
121
|
|
|
list_positions = [] |
122
|
|
|
|
123
|
|
|
for value2 in list1_values: |
124
|
|
|
pos_appended = False |
125
|
|
|
for value1 in search_dim: |
126
|
|
|
if value1 == value2: |
127
|
|
|
list_positions.append(search_dim.index(value1)) |
128
|
|
|
pos_appended = True |
129
|
|
|
break |
130
|
|
|
|
131
|
|
|
if not pos_appended: |
132
|
|
|
list_positions.append(None) |
133
|
|
|
|
134
|
|
|
return list_positions |
135
|
|
|
|
136
|
|
|
def trafo_memory_warm_start(self, results): |
137
|
|
|
if results is None: |
138
|
|
|
return results |
139
|
|
|
|
140
|
|
|
df_positions_dict = {} |
141
|
|
|
for para_name in self.para_names: |
142
|
|
|
result_dim_values = list(results[para_name].values) |
143
|
|
|
search_dim = self.search_space[para_name] |
144
|
|
|
|
145
|
|
|
# if self.data_types[para_name] == "function": |
146
|
|
|
# result_dim_values = [value.__name__ for value in result_dim_values] |
147
|
|
|
|
148
|
|
|
# print("\n para_name", para_name) |
149
|
|
|
|
150
|
|
|
# print(" result_dim_values", result_dim_values) |
151
|
|
|
# print(" search_dim", search_dim) |
152
|
|
|
|
153
|
|
|
list1_positions = self.get_list_positions(result_dim_values, search_dim) |
154
|
|
|
|
155
|
|
|
# remove None |
156
|
|
|
# list1_positions_ = [x for x in list1_positions if x is not None] |
157
|
|
|
df_positions_dict[para_name] = list1_positions |
158
|
|
|
|
159
|
|
|
results_new = pd.DataFrame(df_positions_dict) |
160
|
|
|
results_new["score"] = results["score"] |
161
|
|
|
results_new.dropna(how="any", inplace=True) |
162
|
|
|
|
163
|
|
|
return results_new |
164
|
|
|
|