|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import copy |
|
6
|
|
|
import inspect |
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import pandas as pd |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
from .objective_function import ObjectiveFunction |
|
12
|
|
|
from .hyper_gradient_trafo import HyperGradientTrafo |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
class TrafoClass: |
|
16
|
|
|
def __init__(self, *args, **kwargs): |
|
17
|
|
|
pass |
|
18
|
|
|
|
|
19
|
|
|
def _convert_args2gfo(self, memory_warm_start): |
|
20
|
|
|
memory_warm_start = self.trafo.trafo_memory_warm_start(memory_warm_start) |
|
21
|
|
|
|
|
22
|
|
|
return memory_warm_start |
|
23
|
|
|
|
|
24
|
|
|
def _positions2results(self, positions): |
|
25
|
|
|
results_dict = {} |
|
26
|
|
|
|
|
27
|
|
|
for para_name in self.conv.para_names: |
|
28
|
|
|
values_list = self.search_space[para_name] |
|
29
|
|
|
pos_ = positions[para_name].values |
|
30
|
|
|
values_ = [values_list[idx] for idx in pos_] |
|
31
|
|
|
results_dict[para_name] = values_ |
|
32
|
|
|
|
|
33
|
|
|
results = pd.DataFrame.from_dict(results_dict) |
|
34
|
|
|
|
|
35
|
|
|
diff_list = np.setdiff1d(positions.columns, results.columns) |
|
36
|
|
|
results[diff_list] = positions[diff_list] |
|
37
|
|
|
|
|
38
|
|
|
return results |
|
39
|
|
|
|
|
40
|
|
|
def _convert_results2hyper(self): |
|
41
|
|
|
self.eval_time = np.array(self._optimizer.eval_times).sum() |
|
42
|
|
|
self.iter_time = np.array(self._optimizer.iter_times).sum() |
|
43
|
|
|
|
|
44
|
|
|
if self._optimizer.best_para is not None: |
|
45
|
|
|
value = self.trafo.para2value(self._optimizer.best_para) |
|
46
|
|
|
position = self.trafo.position2value(value) |
|
47
|
|
|
best_para = self.trafo.value2para(position) |
|
48
|
|
|
|
|
49
|
|
|
self.best_para = best_para |
|
50
|
|
|
else: |
|
51
|
|
|
self.best_para = None |
|
52
|
|
|
|
|
53
|
|
|
self.best_score = self._optimizer.best_score |
|
54
|
|
|
self.positions = self._optimizer.results |
|
55
|
|
|
|
|
56
|
|
|
self.results = self._positions2results(self.positions) |
|
57
|
|
|
|
|
58
|
|
|
results_dd = self._optimizer.results.drop_duplicates( |
|
59
|
|
|
subset=self.trafo.para_names, keep="first" |
|
60
|
|
|
) |
|
61
|
|
|
self.memory_values_df = results_dd[ |
|
62
|
|
|
self.trafo.para_names + ["score"] |
|
63
|
|
|
].reset_index(drop=True) |
|
64
|
|
|
|
|
65
|
|
|
|
|
66
|
|
|
class _BaseOptimizer_(TrafoClass): |
|
67
|
|
|
def __init__(self, **opt_params): |
|
68
|
|
|
super().__init__() |
|
69
|
|
|
self.opt_params = opt_params |
|
70
|
|
|
|
|
71
|
|
|
def init(self, search_space, initialize, data_c): |
|
72
|
|
|
self.search_space = search_space |
|
73
|
|
|
self.initialize = initialize |
|
74
|
|
|
self.data_c = data_c |
|
75
|
|
|
|
|
76
|
|
|
self.trafo = HyperGradientTrafo(search_space) |
|
77
|
|
|
|
|
78
|
|
|
initialize = self.trafo.trafo_initialize(initialize) |
|
79
|
|
|
search_space_positions = self.trafo.search_space_positions |
|
80
|
|
|
|
|
81
|
|
|
# trafo warm start for smbo from values into positions |
|
82
|
|
|
if "warm_start_smbo" in self.opt_params: |
|
83
|
|
|
self.opt_params["warm_start_smbo"] = self.trafo.trafo_memory_warm_start( |
|
84
|
|
|
self.opt_params["warm_start_smbo"] |
|
85
|
|
|
) |
|
86
|
|
|
|
|
87
|
|
|
self._optimizer = self._OptimizerClass( |
|
88
|
|
|
search_space_positions, initialize, **self.opt_params |
|
89
|
|
|
) |
|
90
|
|
|
|
|
91
|
|
|
self.conv = self._optimizer.conv |
|
92
|
|
|
|
|
93
|
|
|
def check_LTM(self, memory): |
|
94
|
|
|
try: |
|
95
|
|
|
memory.study_id |
|
96
|
|
|
memory.model_id |
|
97
|
|
|
except: |
|
98
|
|
|
self.memory = memory |
|
99
|
|
|
else: |
|
100
|
|
|
self.init_ltm(memory) |
|
101
|
|
|
|
|
102
|
|
|
def init_ltm(self, memory): |
|
103
|
|
|
self.ltm = copy.deepcopy(memory) |
|
104
|
|
|
self.ltm.init_study( |
|
105
|
|
|
self.objective_function, self.search_space, self.nth_process |
|
106
|
|
|
) |
|
107
|
|
|
self.memory_warm_start = self.ltm.load() |
|
108
|
|
|
self.memory = True |
|
109
|
|
|
|
|
110
|
|
|
print("\n self.memory_warm_start \n", self.memory_warm_start) |
|
111
|
|
|
|
|
112
|
|
|
def search( |
|
113
|
|
|
self, |
|
114
|
|
|
objective_function, |
|
115
|
|
|
n_iter, |
|
116
|
|
|
max_time=None, |
|
117
|
|
|
max_score=None, |
|
118
|
|
|
memory=True, |
|
119
|
|
|
memory_warm_start=None, |
|
120
|
|
|
verbosity={ |
|
121
|
|
|
"progress_bar": True, |
|
122
|
|
|
"print_results": True, |
|
123
|
|
|
"print_times": True, |
|
124
|
|
|
}, |
|
125
|
|
|
random_state=None, |
|
126
|
|
|
nth_process=None, |
|
127
|
|
|
): |
|
128
|
|
|
self.objective_function = objective_function |
|
129
|
|
|
self.nth_process = nth_process |
|
130
|
|
|
|
|
131
|
|
|
gfo_wrapper_model = ObjectiveFunction( |
|
132
|
|
|
objective_function, self._optimizer, nth_process |
|
133
|
|
|
) |
|
134
|
|
|
|
|
135
|
|
|
# ltm init |
|
136
|
|
|
self.check_LTM(memory) |
|
137
|
|
|
memory_warm_start = self._convert_args2gfo(memory_warm_start) |
|
138
|
|
|
|
|
139
|
|
|
self._optimizer.search( |
|
140
|
|
|
gfo_wrapper_model(self.search_space, self.data_c), |
|
141
|
|
|
n_iter, |
|
142
|
|
|
max_time, |
|
143
|
|
|
max_score, |
|
144
|
|
|
memory, |
|
145
|
|
|
memory_warm_start, |
|
146
|
|
|
verbosity, |
|
147
|
|
|
random_state, |
|
148
|
|
|
nth_process, |
|
149
|
|
|
) |
|
150
|
|
|
|
|
151
|
|
|
self._convert_results2hyper() |
|
152
|
|
|
self.p_bar = self._optimizer.p_bar |
|
153
|
|
|
|
|
154
|
|
|
# ltm save after finish |
|
155
|
|
|
""" |
|
156
|
|
|
if inspect.isclass(type(memory)): |
|
157
|
|
|
self.ltm.save_on_finish(self.results) |
|
158
|
|
|
""" |
|
159
|
|
|
|