1
|
|
|
# sns.set(color_codes=True) |
2
|
|
|
# sns.set_palette(sns.color_palette("RdBu", n_colors=7)) |
3
|
|
|
# sns.set(rc={'figure.figsize':(12, 9)}) |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
import matplotlib.pyplot as plt |
8
|
|
|
|
9
|
|
|
from sklearn.datasets import load_breast_cancer |
10
|
|
|
|
11
|
|
|
from hyperactive import HillClimbingOptimizer |
12
|
|
|
from hyperactive import StochasticHillClimbingOptimizer |
13
|
|
|
from hyperactive import TabuOptimizer |
14
|
|
|
from hyperactive import RandomSearchOptimizer |
15
|
|
|
from hyperactive import RandomRestartHillClimbingOptimizer |
16
|
|
|
from hyperactive import RandomAnnealingOptimizer |
17
|
|
|
from hyperactive import SimulatedAnnealingOptimizer |
18
|
|
|
from hyperactive import StochasticTunnelingOptimizer |
19
|
|
|
from hyperactive import ParallelTemperingOptimizer |
20
|
|
|
from hyperactive import ParticleSwarmOptimizer |
21
|
|
|
from hyperactive import EvolutionStrategyOptimizer |
22
|
|
|
from hyperactive import BayesianOptimizer |
23
|
|
|
|
24
|
|
|
breast_cancer_data = load_breast_cancer() |
25
|
|
|
X = breast_cancer_data.data |
26
|
|
|
y = breast_cancer_data.target |
27
|
|
|
|
28
|
|
|
opt_list = { |
29
|
|
|
"Hill Climbing": HillClimbingOptimizer, |
30
|
|
|
"Stoch. Hill Climbing": StochasticHillClimbingOptimizer, |
31
|
|
|
"Tabu Search": TabuOptimizer, |
32
|
|
|
"Random Search": RandomSearchOptimizer, |
33
|
|
|
"Rand. Rest. Hill Climbing": RandomRestartHillClimbingOptimizer, |
34
|
|
|
"Random Annealing": RandomAnnealingOptimizer, |
35
|
|
|
"Simulated Annealing": SimulatedAnnealingOptimizer, |
36
|
|
|
"Stochastic Tunneling": StochasticTunnelingOptimizer, |
37
|
|
|
"Parallel Tempering": ParallelTemperingOptimizer, |
38
|
|
|
"Particle Swarm": ParticleSwarmOptimizer, |
39
|
|
|
"Evolution Strategy": EvolutionStrategyOptimizer, |
40
|
|
|
"Bayesian Optimization": BayesianOptimizer, |
41
|
|
|
} |
42
|
|
|
|
43
|
|
|
search_config = { |
44
|
|
|
"sklearn.ensemble.GradientBoostingClassifier": { |
45
|
|
|
"n_estimators": range(1, 102, 1), |
46
|
|
|
"max_depth": range(1, 32, 1), |
47
|
|
|
} |
48
|
|
|
} |
49
|
|
|
n_iter = 150 |
50
|
|
|
|
51
|
|
|
opt_dict = {"cv": 5, "n_jobs": 1, "memory": False, "verbosity": 0} |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
def _plot(plt, pos, score): |
55
|
|
|
df = pd.DataFrame( |
56
|
|
|
{"n_estimators": pos[:, 0], "max_depth": pos[:, 1], "score": score} |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
# plot |
60
|
|
|
plt.plot( |
61
|
|
|
"n_estimators", |
62
|
|
|
"max_depth", |
63
|
|
|
data=df, |
64
|
|
|
linestyle="-", |
65
|
|
|
marker=",", |
66
|
|
|
color="gray", |
67
|
|
|
alpha=0.33, |
68
|
|
|
) |
69
|
|
|
plt.scatter( |
70
|
|
|
df["n_estimators"], |
71
|
|
|
df["max_depth"], |
72
|
|
|
c=df["score"], |
73
|
|
|
marker="H", |
74
|
|
|
s=50, |
75
|
|
|
vmin=0.88, |
76
|
|
|
vmax=0.98, |
77
|
|
|
) |
78
|
|
|
|
79
|
|
|
return plt |
80
|
|
|
|
81
|
|
|
|
82
|
|
|
for opt in opt_list: |
83
|
|
|
n_iter_temp = n_iter |
84
|
|
|
opt_dict_temp = opt_dict |
85
|
|
|
|
86
|
|
|
if opt == "Parallel Tempering": |
87
|
|
|
n_iter_temp = int(n_iter / 10) |
88
|
|
|
opt_dict_temp["system_temps"] = [0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100] |
89
|
|
|
|
90
|
|
|
if opt == "Particle Swarm": |
91
|
|
|
n_iter_temp = int(n_iter / 10) |
92
|
|
|
opt_dict_temp["n_part"] = 10 |
93
|
|
|
|
94
|
|
|
if opt == "Evolution Strategy": |
95
|
|
|
n_iter_temp = int(n_iter / 10) |
96
|
|
|
opt_dict_temp["individuals"] = 10 |
97
|
|
|
|
98
|
|
|
opt_ = opt_list[opt] |
99
|
|
|
opt_ = opt_( |
100
|
|
|
search_config, n_iter=n_iter_temp, get_search_path=True, **opt_dict_temp |
101
|
|
|
) |
102
|
|
|
opt_.fit(X, y) |
103
|
|
|
|
104
|
|
|
pos_list = opt_.pos_list |
105
|
|
|
score_list = opt_.score_list |
106
|
|
|
|
107
|
|
|
pos_list = np.array(pos_list) |
108
|
|
|
score_list = np.array(score_list) |
109
|
|
|
|
110
|
|
|
plt.figure(figsize=(15, 5)) |
111
|
|
|
plt.set_cmap("jet") |
112
|
|
|
|
113
|
|
|
pos_list = np.swapaxes(pos_list, 0, 1) |
114
|
|
|
score_list = np.swapaxes(score_list, 0, 1) |
115
|
|
|
|
116
|
|
|
# print("\npos_list\n", pos_list, pos_list.shape) |
117
|
|
|
# print("score_list\n", score_list, score_list.shape) |
118
|
|
|
|
119
|
|
|
for pos, score in zip(pos_list, score_list): |
120
|
|
|
# print(pos[:, 0]) |
121
|
|
|
# print(pos[:, 1]) |
122
|
|
|
# print(score, "\n") |
123
|
|
|
plt = _plot(plt, pos, score) |
124
|
|
|
|
125
|
|
|
plt.title(opt) |
126
|
|
|
plt.xlabel("n_estimators") |
127
|
|
|
plt.ylabel("max_depth") |
128
|
|
|
|
129
|
|
|
plt.xlim((0, 100)) |
130
|
|
|
plt.ylim((0, 30)) |
131
|
|
|
plt.colorbar() |
132
|
|
|
|
133
|
|
|
plt.tight_layout() |
134
|
|
|
plt.savefig("search_path_" + opt + ".png") |
135
|
|
|
|