for testing and deploying your application
for finding and fixing issues
for empowering human code reviews
# Author: Simon Blanke
# Email: [email protected]
# License: MIT License
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
from hyperactive import Hyperactive
data = load_iris()
X = data.data
y = data.target
memory = False
def model(para, X, y):
dtc = DecisionTreeClassifier(
max_depth=para["max_depth"],
min_samples_split=para["min_samples_split"],
min_samples_leaf=para["min_samples_leaf"],
)
scores = cross_val_score(dtc, X, y, cv=2)
return scores.mean()
search_config = {
model: {
"max_depth": range(1, 21),
"min_samples_split": range(2, 21),
"min_samples_leaf": range(1, 21),
}
def test_results():
opt = Hyperactive(X, y, memory=memory)
opt.search(search_config)
assert len(list(opt.results[model].keys())) == 3
def test_best_scores():
assert 0 < opt.best_scores[model] < 1