Completed
Push — master ( 8b8364...81d861 )
by Simon
04:18
created

tests.test_attributes.test_results()   A

Complexity

Conditions 1

Size

Total Lines 5
Code Lines 4

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 4
nop 0
dl 0
loc 5
rs 10
c 0
b 0
f 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from sklearn.datasets import load_iris
6
from sklearn.model_selection import cross_val_score
7
from sklearn.tree import DecisionTreeClassifier
8
9
from hyperactive import Hyperactive
10
11
data = load_iris()
12
X = data.data
13
y = data.target
14
memory = False
15
16
17
def model(para, X, y):
18
    dtc = DecisionTreeClassifier(
19
        max_depth=para["max_depth"],
20
        min_samples_split=para["min_samples_split"],
21
        min_samples_leaf=para["min_samples_leaf"],
22
    )
23
    scores = cross_val_score(dtc, X, y, cv=2)
24
25
    return scores.mean()
26
27
28
search_config = {
29
    model: {
30
        "max_depth": range(1, 21),
31
        "min_samples_split": range(2, 21),
32
        "min_samples_leaf": range(1, 21),
33
    }
34
}
35
36
37
def test_results():
38
    opt = Hyperactive(X, y, memory=memory)
39
    opt.search(search_config)
40
41
    assert len(list(opt.results[model].keys())) == 3
42
43
44
def test_best_scores():
45
    opt = Hyperactive(X, y, memory=memory)
46
    opt.search(search_config)
47
48
    assert 0 < opt.best_scores[model] < 1
49