Passed
Pull Request — master (#110)
by
unknown
01:48
created

Ackley._paramnames()   A

Complexity

Conditions 1

Size

Total Lines 2
Code Lines 2

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 2
dl 0
loc 2
rs 10
c 0
b 0
f 0
cc 1
nop 1
1
import numpy as np
2
3
from hyperactive.base import BaseExperiment
4
5
6
class Ackley(BaseExperiment):
7
    r"""Ackley function, common benchmark for optimization algorithms.
8
9
    The Ackley function is a non-convex function used to test optimization algorithms.
10
    It is defined as:
11
12
    .. math::
13
        f(x) = -a \cdot \exp(-\frac{b}{\sqrt{d}\left\|x\right\|}) - \exp(\frac{1}{d} \sum_{i=1}^d\cos (c x_i) ) + a + \exp(1)
14
15
    where :math:`a` (= `a`), :math:`b` (= `b`), and :math:`c` (= `c`) are constants,
16
    :math:`d` (= `d`) is the number of dimensions of the real input vector :math:`x`,
17
    and :math:`\left\|x\right\|` is the Euclidean norm of the vector :math:`x`.
18
19
    The components of the function argument :math:`x`
20
    are the input variables of the `score` method,
21
    and are set as `x0`, `x1`, ..., `x[d]` respectively.
22
23
    Parameters
24
    ----------
25
    a : float, optional, default=20
26
        Amplitude constant used in the calculation of the Ackley function.
27
    b : float, optional, default=0.2
28
        Decay constant used in the calculation of the Ackley function.
29
    c : float, optional, default=2*pi
30
        Frequency constant used in the calculation of the Ackley function.
31
    d : int, optional, default=2
32
        Number of dimensions for the Ackley function. The default is 2.
33
34
    Example
35
    -------
36
    >>> from hyperactive.experiment.toy import Ackley
37
    >>> ackley = Ackley(a=20)
38
    >>> params = {"x0": 1, "x1": 2}
39
    >>> score, add_info = ackley.score(params)
40
41
    Quick call without metadata return or dictionary:
42
    >>> score = ackley(x0=1, x1=2)
43
    """  # noqa: E501
44
45
    _tags = {
46
        "property:randomness": "deterministic",  # random or deterministic
47
        # if deterministic, two calls of score will result in the same value
48
        # random = two calls may result in different values; same as "stochastic"
49
    }
50
51
    def __init__(self, a=20, b=0.2, c=2 * np.pi, d=2):
52
        self.a = a
53
        self.b = b
54
        self.c = c
55
        self.d = d
56
        super().__init__()
57
58
    def _paramnames(self):
59
        return [f"x{i}" for i in range(self.d)]
60
61
    def _score(self, params):
62
        x_vec = np.array([params[f"x{i}"] for i in range(self.d)])
63
64
        loss1 = -self.a * np.exp(-self.b * np.sqrt(np.sum(x_vec**2) / self.d))
65
        loss2 = -np.exp(np.sum(np.cos(self.c * x_vec)) / self.d)
66
        loss3 = np.exp(1)
67
        loss4 = self.a
68
69
        loss = loss1 + loss2 + loss3 + loss4
70
71
        return loss, {}
72
73
    @classmethod
74
    def get_test_params(cls, parameter_set="default"):
75
        """Return testing parameter settings for the skbase object.
76
77
        ``get_test_params`` is a unified interface point to store
78
        parameter settings for testing purposes. This function is also
79
        used in ``create_test_instance`` and ``create_test_instances_and_names``
80
        to construct test instances.
81
82
        ``get_test_params`` should return a single ``dict``, or a ``list`` of ``dict``.
83
84
        Each ``dict`` is a parameter configuration for testing,
85
        and can be used to construct an "interesting" test instance.
86
        A call to ``cls(**params)`` should
87
        be valid for all dictionaries ``params`` in the return of ``get_test_params``.
88
89
        The ``get_test_params`` need not return fixed lists of dictionaries,
90
        it can also return dynamic or stochastic parameter settings.
91
92
        Parameters
93
        ----------
94
        parameter_set : str, default="default"
95
            Name of the set of test parameters to return, for use in tests. If no
96
            special parameters are defined for a value, will return `"default"` set.
97
98
        Returns
99
        -------
100
        params : dict or list of dict, default = {}
101
            Parameters to create testing instances of the class
102
            Each dict are parameters to construct an "interesting" test instance, i.e.,
103
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
104
            `create_test_instance` uses the first (or only) dictionary in `params`
105
        """
106
        return [{"a": 0}, {"a": 20, "d": 42}, {"a": -42, "b": 0.5, "c": 1, "d": 10}]
107
108
    @classmethod
109
    def _get_score_params(self):
110
        """Return settings for the score function.
111
112
        Returns a list, the i-th element corresponds to self.get_test_params()[i].
113
        It should be a valid call for self.score.
114
115
        Returns
116
        -------
117
        list of dict
118
            The parameters to be used for scoring.
119
        """
120
        params0 = {"x0": 0, "x1": 0}
121
        params1 = {f"x{i}": i + 3 for i in range(42)}
122
        params2 = {f"x{i}": i**2 for i in range(10)}
123
        return [params0, params1, params2]
124