1
|
|
|
from __future__ import division, print_function, absolute_import |
2
|
|
|
import tensorflow as tf |
3
|
|
|
from tensorflow.examples.tutorials.mnist import input_data |
4
|
|
|
|
5
|
|
|
from hyperactive import Hyperactive |
6
|
|
|
|
7
|
|
|
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) |
8
|
|
|
|
9
|
|
|
learning_rate = 0.001 |
10
|
|
|
num_steps = 500 |
11
|
|
|
batch_size = 128 |
12
|
|
|
|
13
|
|
|
num_input = 784 |
14
|
|
|
num_classes = 10 |
15
|
|
|
dropout = 0.25 |
16
|
|
|
|
17
|
|
|
X_train = mnist.train.images |
18
|
|
|
y_train = mnist.train.labels |
19
|
|
|
|
20
|
|
|
X_test = mnist.test.images |
21
|
|
|
y_test = mnist.test.labels |
22
|
|
|
|
23
|
|
|
|
24
|
|
View Code Duplication |
def cnn(para, X_train, y_train): |
|
|
|
|
25
|
|
|
def conv_net(x_dict, n_classes, dropout, reuse, is_training): |
26
|
|
|
with tf.variable_scope("ConvNet", reuse=reuse): |
27
|
|
|
x = x_dict["images"] |
28
|
|
|
x = tf.reshape(x, shape=[-1, 28, 28, 1]) |
29
|
|
|
conv1 = tf.layers.conv2d(x, para["filters_0"], 5, activation=tf.nn.relu) |
30
|
|
|
conv1 = tf.layers.max_pooling2d(conv1, 2, 2) |
31
|
|
|
conv2 = tf.layers.conv2d(conv1, para["filters_1"], 3, activation=tf.nn.relu) |
32
|
|
|
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) |
33
|
|
|
fc1 = tf.contrib.layers.flatten(conv2) |
34
|
|
|
fc1 = tf.layers.dense(fc1, para["dense_0"]) |
35
|
|
|
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) |
36
|
|
|
out = tf.layers.dense(fc1, n_classes) |
37
|
|
|
|
38
|
|
|
return out |
39
|
|
|
|
40
|
|
|
def model_fn(features, labels, mode): |
41
|
|
|
logits_train = conv_net( |
42
|
|
|
features, num_classes, dropout, reuse=False, is_training=True |
43
|
|
|
) |
44
|
|
|
logits_test = conv_net( |
45
|
|
|
features, num_classes, dropout, reuse=True, is_training=False |
46
|
|
|
) |
47
|
|
|
|
48
|
|
|
pred_classes = tf.argmax(logits_test, axis=1) |
49
|
|
|
# pred_probas = tf.nn.softmax(logits_test) |
50
|
|
|
|
51
|
|
|
if mode == tf.estimator.ModeKeys.PREDICT: |
52
|
|
|
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) |
53
|
|
|
|
54
|
|
|
loss_op = tf.reduce_mean( |
55
|
|
|
tf.nn.sparse_softmax_cross_entropy_with_logits( |
56
|
|
|
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32) |
57
|
|
|
) |
58
|
|
|
) |
59
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) |
60
|
|
|
train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) |
61
|
|
|
|
62
|
|
|
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) |
63
|
|
|
|
64
|
|
|
estim_specs = tf.estimator.EstimatorSpec( |
65
|
|
|
mode=mode, |
66
|
|
|
predictions=pred_classes, |
67
|
|
|
loss=loss_op, |
68
|
|
|
train_op=train_op, |
69
|
|
|
eval_metric_ops={"accuracy": acc_op}, |
70
|
|
|
) |
71
|
|
|
|
72
|
|
|
return estim_specs |
73
|
|
|
|
74
|
|
|
model = tf.estimator.Estimator(model_fn) |
75
|
|
|
|
76
|
|
|
input_fn = tf.estimator.inputs.numpy_input_fn( |
77
|
|
|
x={"images": X_train}, |
78
|
|
|
y=y_train, |
79
|
|
|
batch_size=batch_size, |
80
|
|
|
num_epochs=None, |
81
|
|
|
shuffle=True, |
82
|
|
|
) |
83
|
|
|
model.train(input_fn, steps=num_steps) |
84
|
|
|
|
85
|
|
|
input_fn = tf.estimator.inputs.numpy_input_fn( |
86
|
|
|
x={"images": X_test}, y=y_test, batch_size=batch_size, shuffle=False |
87
|
|
|
) |
88
|
|
|
e = model.evaluate(input_fn) |
89
|
|
|
|
90
|
|
|
return float(e["accuracy"]) |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
search_config = { |
94
|
|
|
cnn: { |
95
|
|
|
"filters_0": [16, 32, 64], |
96
|
|
|
"filters_1": [16, 32, 64], |
97
|
|
|
"dense_0": range(100, 2000, 100), |
98
|
|
|
} |
99
|
|
|
} |
100
|
|
|
|
101
|
|
|
opt = Hyperactive(X_train, y_train) |
102
|
|
|
opt.search(search_config, n_iter=20) |
103
|
|
|
|