Total Complexity | 1 |
Total Lines | 49 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.model_selection import cross_val_score |
||
2 | from sklearn.ensemble import GradientBoostingClassifier |
||
3 | from sklearn.datasets import load_breast_cancer |
||
4 | from hyperactive import Hyperactive |
||
5 | |||
6 | data = load_breast_cancer() |
||
7 | X, y = data.data, data.target |
||
8 | |||
9 | |||
10 | def model(para, X, y): |
||
11 | gbc = GradientBoostingClassifier( |
||
12 | n_estimators=para["n_estimators"], |
||
13 | max_depth=para["max_depth"], |
||
14 | min_samples_split=para["min_samples_split"], |
||
15 | ) |
||
16 | scores = cross_val_score(gbc, X, y, cv=3) |
||
17 | |||
18 | return scores.mean() |
||
19 | |||
20 | |||
21 | search_config = { |
||
22 | model: { |
||
23 | "n_estimators": range(10, 200, 10), |
||
24 | "max_depth": range(2, 12), |
||
25 | "min_samples_split": range(2, 12), |
||
26 | } |
||
27 | } |
||
28 | |||
29 | # Without scatter initialization |
||
30 | opt = Hyperactive(X, y) |
||
31 | opt.search( |
||
32 | search_config, |
||
33 | optimizer="HillClimbing", |
||
34 | n_iter=10, |
||
35 | random_state=0, |
||
36 | init_config=False, |
||
37 | ) |
||
38 | |||
39 | init_config = {"scatter_init": 10} |
||
40 | |||
41 | # With scatter initialization |
||
42 | opt = Hyperactive(X, y) |
||
43 | opt.search( |
||
44 | search_config, |
||
45 | optimizer="HillClimbing", |
||
46 | n_iter=10, |
||
47 | random_state=0, |
||
48 | init_config=init_config, |
||
49 | ) |
||
50 |