Total Complexity | 1 |
Total Lines | 21 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | from hyperactive import Hyperactive |
||
3 | |||
4 | |||
5 | def rosen(para, X, y): |
||
6 | """The Rosenbrock function""" |
||
7 | x = np.array([para["x1"], para["x2"], para["x3"], para["x4"]]) |
||
8 | y = np.array([para["x0"], para["x1"], para["x2"], para["x3"]]) |
||
9 | |||
10 | return -sum(100.0 * (x - y ** 2.0) ** 2.0 + (1 - y) ** 2.0) |
||
11 | |||
12 | |||
13 | x_range = np.arange(0, 3, 0.1) |
||
14 | |||
15 | search_config = { |
||
16 | rosen: {"x0": x_range, "x1": x_range, "x2": x_range, "x3": x_range, "x4": x_range} |
||
17 | } |
||
18 | |||
19 | opt = Hyperactive(0, 0) |
||
20 | opt.search(search_config, n_iter=1000000) |
||
21 |