Total Complexity | 1 |
Total Lines | 35 |
Duplicated Lines | 34.29 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
1 | from sklearn.datasets import load_breast_cancer |
||
2 | from sklearn.model_selection import cross_val_score |
||
3 | from rgf.sklearn import RGFClassifier |
||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | |||
7 | data = load_breast_cancer() |
||
8 | X, y = data.data, data.target |
||
9 | |||
10 | |||
11 | View Code Duplication | def model(para, X, y): |
|
|
|||
12 | rgf = RGFClassifier( |
||
13 | max_leaf=para["max_leaf"], |
||
14 | reg_depth=para["reg_depth"], |
||
15 | min_samples_leaf=para["min_samples_leaf"], |
||
16 | algorithm="RGF_Sib", |
||
17 | test_interval=100, |
||
18 | verbose=False, |
||
19 | ) |
||
20 | scores = cross_val_score(rgf, X, y, cv=3) |
||
21 | |||
22 | return scores.mean() |
||
23 | |||
24 | |||
25 | search_config = { |
||
26 | model: { |
||
27 | "max_leaf": range(1000, 10000, 100), |
||
28 | "reg_depth": range(1, 21), |
||
29 | "min_samples_leaf": range(1, 21), |
||
30 | } |
||
31 | } |
||
32 | |||
33 | opt = Hyperactive(X, y) |
||
34 | opt.search(search_config, n_iter=5) |
||
35 |