Total Complexity | 1 |
Total Lines | 32 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.model_selection import cross_val_score |
||
2 | from lightgbm import LGBMRegressor |
||
3 | from sklearn.datasets import load_breast_cancer |
||
4 | from hyperactive import Hyperactive |
||
5 | |||
6 | data = load_breast_cancer() |
||
7 | X, y = data.data, data.target |
||
8 | |||
9 | |||
10 | def model(para, X, y): |
||
11 | lgbm = LGBMRegressor( |
||
12 | num_leaves=para["num_leaves"], |
||
13 | bagging_freq=para["bagging_freq"], |
||
14 | learning_rate=para["learning_rate"], |
||
15 | ) |
||
16 | scores = cross_val_score(lgbm, X, y, cv=3) |
||
17 | |||
18 | return scores.mean() |
||
19 | |||
20 | |||
21 | search_config = { |
||
22 | model: { |
||
23 | "num_leaves": range(2, 20), |
||
24 | "bagging_freq": range(2, 12), |
||
25 | "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0], |
||
26 | } |
||
27 | } |
||
28 | |||
29 | |||
30 | opt = Hyperactive(X, y) |
||
31 | opt.search(search_config, n_iter=30) |
||
32 |