Passed
Push — master ( ef01f2...fd3757 )
by Simon
01:46 queued 10s
created

ENAS.cnn()   A

Complexity

Conditions 1

Size

Total Lines 37
Code Lines 15

Duplication

Lines 37
Ratio 100 %

Importance

Changes 0
Metric Value
eloc 15
dl 37
loc 37
rs 9.65
c 0
b 0
f 0
cc 1
nop 3
1
from keras.models import Sequential
2
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Activation, Dropout
3
from keras.datasets import cifar10
4
from keras.utils import to_categorical
5
6
from hyperactive import Hyperactive
7
8
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
9
10
y_train = to_categorical(y_train, 10)
11
y_test = to_categorical(y_test, 10)
12
13
14
"""
15
Efficient Neural Architecture Search via Parameter Sharing:
16
https://arxiv.org/pdf/1802.03268.pdf
17
"""
18
19
20
def conv1(model):
21
    model.add(Conv2D(32, (3, 3)))
22
    model.add(Activation("relu"))
23
    model.add(MaxPooling2D(pool_size=(2, 2)))
24
    return model
25
26
27
def conv2(model):
28
    model.add(Conv2D(32, (3, 3)))
29
    model.add(Activation("relu"))
30
    return model
31
32
33
def conv3(model):
34
    return model
35
36
37
model_pretrained = Sequential()
38
model_pretrained.add(Conv2D(64, (3, 3), padding="same", input_shape=X_train.shape[1:]))
39
model_pretrained.add(Activation("relu"))
40
model_pretrained.add(Conv2D(32, (3, 3)))
41
model_pretrained.add(Activation("relu"))
42
model_pretrained.add(MaxPooling2D(pool_size=(2, 2)))
43
model_pretrained.add(Dropout(0.25))
44
45
model_pretrained.add(Conv2D(32, (3, 3), padding="same"))
46
model_pretrained.add(Activation("relu"))
47
model_pretrained.add(Dropout(0.25))
48
49
model_pretrained.add(Flatten())
50
model_pretrained.add(Dense(200))
51
model_pretrained.add(Activation("relu"))
52
model_pretrained.add(Dropout(0.5))
53
model_pretrained.add(Dense(10))
54
model_pretrained.add(Activation("softmax"))
55
56
model_pretrained.compile(
57
    optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
58
)
59
model_pretrained.fit(X_train, y_train, epochs=50, batch_size=128)
60
61
n_layers = len(model_pretrained.layers)
62
63
for i in range(n_layers - 8):
64
    model_pretrained.pop()
65
66
for layer in model_pretrained.layers:
67
    layer.trainable = False
68
69
print(model_pretrained.summary())
70
71
72 View Code Duplication
def cnn(para, X_train, y_train):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
73
    """
74
    model = Sequential()
75
    model.add(
76
        Conv2D(64, (3, 3), padding="same", input_shape=X_train.shape[1:])
77
    )
78
    model.add(Activation("relu"))
79
    model.add(Conv2D(32, (3, 3)))
80
    model.add(Activation("relu"))
81
82
83
    model.add(MaxPooling2D(pool_size=(2, 2)))
84
    model.add(Dropout(0.25))
85
86
    model.add(Conv2D(32, (3, 3), padding="same"))
87
    model.add(Activation("relu"))
88
    """
89
    model = model_pretrained
90
91
    model = para["conv_layer.0"](model)
92
    model.add(Dropout(0.25))
93
94
    model.add(Flatten())
95
    model.add(Dense(para["neurons.0"]))
96
    model.add(Activation("relu"))
97
    model.add(Dropout(0.5))
98
    model.add(Dense(10))
99
    model.add(Activation("softmax"))
100
101
    model.compile(
102
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
103
    )
104
    model.fit(X_train, y_train, epochs=25, batch_size=128)
105
106
    _, score = model.evaluate(x=X_test, y=y_test)
107
108
    return score
109
110
111
search_config = {
112
    cnn: {"conv_layer.0": [conv1, conv2, conv3], "neurons.0": range(100, 1000, 100)}
113
}
114
115
opt = Hyperactive(X_train, y_train)
116
opt.search(search_config, n_iter=5)
117