1
|
|
|
import os |
2
|
|
|
import inspect |
3
|
|
|
import pytest |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
from hyperactive import Hyperactive, LongTermMemory |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def func1(): |
12
|
|
|
pass |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def func2(): |
16
|
|
|
pass |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def func3(): |
20
|
|
|
pass |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def objective_function(opt): |
24
|
|
|
score = -opt["x1"] * opt["x1"] |
25
|
|
|
return score |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class class1: |
29
|
|
|
pass |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class class2: |
33
|
|
|
pass |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
class class3: |
37
|
|
|
pass |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
class class1_: |
41
|
|
|
def __init__(self): |
42
|
|
|
pass |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
class class2_: |
46
|
|
|
def __init__(self): |
47
|
|
|
pass |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
class class3_: |
51
|
|
|
def __init__(self): |
52
|
|
|
pass |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
search_space_int = { |
56
|
|
|
"x1": list(range(0, 3, 1)), |
57
|
|
|
} |
58
|
|
|
|
59
|
|
|
search_space_float = { |
60
|
|
|
"x1": list(np.arange(0, 0.003, 0.001)), |
61
|
|
|
} |
62
|
|
|
|
63
|
|
|
search_space_str = { |
64
|
|
|
"x1": list(range(0, 100, 1)), |
65
|
|
|
"str1": ["0", "1", "2"], |
66
|
|
|
} |
67
|
|
|
|
68
|
|
|
search_space_func = { |
69
|
|
|
"x1": list(range(0, 100, 1)), |
70
|
|
|
"func1": [func1, func2, func3], |
71
|
|
|
} |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
search_space_class = { |
75
|
|
|
"x1": list(range(0, 100, 1)), |
76
|
|
|
"class1": [class1, class2, class3], |
77
|
|
|
} |
78
|
|
|
|
79
|
|
|
|
80
|
|
|
search_space_obj = { |
81
|
|
|
"x1": list(range(0, 100, 1)), |
82
|
|
|
"class1": [class1_(), class2_(), class3_()], |
83
|
|
|
} |
84
|
|
|
|
85
|
|
|
search_space_lists = { |
86
|
|
|
"x1": list(range(0, 100, 1)), |
87
|
|
|
"list1": [[1, 1, 1], [1, 2, 1], [1, 1, 2]], |
88
|
|
|
} |
89
|
|
|
|
90
|
|
|
search_space_para = ( |
91
|
|
|
"search_space", |
92
|
|
|
[ |
93
|
|
|
(search_space_int), |
94
|
|
|
(search_space_float), |
95
|
|
|
(search_space_str), |
96
|
|
|
(search_space_func), |
97
|
|
|
(search_space_class), |
98
|
|
|
(search_space_obj), |
99
|
|
|
(search_space_lists), |
100
|
|
|
], |
101
|
|
|
) |
102
|
|
|
|
103
|
|
|
path_para = ( |
104
|
|
|
"path", |
105
|
|
|
[("./"), (None),], |
106
|
|
|
) |
107
|
|
|
|
108
|
|
|
""" |
109
|
|
|
@pytest.mark.parametrize(*path_para) |
110
|
|
|
@pytest.mark.parametrize(*search_space_para) |
111
|
|
|
def test_ltm_0(search_space, path): |
112
|
|
|
model_name = "test_ltm_0" |
113
|
|
|
|
114
|
|
|
def objective_function(opt): |
115
|
|
|
score = -opt["x1"] * opt["x1"] |
116
|
|
|
return score |
117
|
|
|
|
118
|
|
|
hyper = Hyperactive() |
119
|
|
|
hyper.add_search(objective_function, search_space, n_iter=25) |
120
|
|
|
hyper.run() |
121
|
|
|
|
122
|
|
|
memory = LongTermMemory(model_name, path=path) |
123
|
|
|
results1 = hyper.results(objective_function) |
124
|
|
|
memory.save(results1, objective_function) |
125
|
|
|
|
126
|
|
|
results2 = memory.load() |
127
|
|
|
remove_file(path) |
128
|
|
|
|
129
|
|
|
assert results1.equals(results2) |
130
|
|
|
""" |
131
|
|
|
|
132
|
|
|
|
133
|
|
|
def test_ltm_10(): |
134
|
|
|
path = None |
135
|
|
|
model_name = "test_ltm_0" |
136
|
|
|
|
137
|
|
|
def objective_function(opt): |
138
|
|
|
score = -opt["x1"] * opt["x1"] |
139
|
|
|
return score |
140
|
|
|
|
141
|
|
|
search_space = { |
142
|
|
|
"x1": list(range(0, 3, 1)), |
143
|
|
|
} |
144
|
|
|
|
145
|
|
|
memory = LongTermMemory(model_name, path=path) |
146
|
|
|
|
147
|
|
|
hyper = Hyperactive() |
148
|
|
|
hyper.add_search( |
149
|
|
|
objective_function, search_space, n_iter=25, long_term_memory=memory |
150
|
|
|
) |
151
|
|
|
hyper.run() |
152
|
|
|
|
153
|
|
|
hyper = Hyperactive() |
154
|
|
|
hyper.add_search( |
155
|
|
|
objective_function, search_space, n_iter=25, long_term_memory=memory |
156
|
|
|
) |
157
|
|
|
hyper.run() |
158
|
|
|
|
159
|
|
|
memory.remove_model_data() |
160
|
|
|
|
161
|
|
|
|
162
|
|
|
""" |
163
|
|
|
@pytest.mark.parametrize(*path_para) |
164
|
|
|
@pytest.mark.parametrize(*search_space_para) |
165
|
|
|
def test_ltm_1(search_space, path): |
166
|
|
|
model_name = "test_ltm_1" |
167
|
|
|
|
168
|
|
|
def objective_function(opt): |
169
|
|
|
score = -opt["x1"] * opt["x1"] |
170
|
|
|
return score |
171
|
|
|
|
172
|
|
|
memory = LongTermMemory(model_name, path=path) |
173
|
|
|
|
174
|
|
|
hyper0 = Hyperactive() |
175
|
|
|
hyper0.add_search( |
176
|
|
|
objective_function, search_space, n_iter=25, long_term_memory=memory |
177
|
|
|
) |
178
|
|
|
hyper0.run() |
179
|
|
|
|
180
|
|
|
hyper1 = Hyperactive() |
181
|
|
|
hyper1.add_search( |
182
|
|
|
objective_function, search_space, n_iter=25, long_term_memory=memory |
183
|
|
|
) |
184
|
|
|
hyper1.run() |
185
|
|
|
|
186
|
|
|
remove_file() |
187
|
|
|
""" |
188
|
|
|
|
189
|
|
|
|
190
|
|
View Code Duplication |
def test_ltm_int(): |
|
|
|
|
191
|
|
|
path = "./" |
192
|
|
|
model_name = "test_ltm_int" |
193
|
|
|
array = np.arange(3 * 10).reshape(10, 3) |
194
|
|
|
results1 = pd.DataFrame(array, columns=["x1", "x2", "x3"]) |
195
|
|
|
|
196
|
|
|
memory = LongTermMemory(model_name, path=path) |
197
|
|
|
memory.save(results1, objective_function) |
198
|
|
|
|
199
|
|
|
results2 = memory.load() |
200
|
|
|
|
201
|
|
|
memory.remove_model_data() |
202
|
|
|
|
203
|
|
|
assert results1.equals(results2) |
204
|
|
|
|
205
|
|
|
|
206
|
|
View Code Duplication |
def test_ltm_float(): |
|
|
|
|
207
|
|
|
path = "./" |
208
|
|
|
model_name = "test_ltm_float" |
209
|
|
|
array = np.arange(3 * 10).reshape(10, 3) |
210
|
|
|
array = array / 1000 |
211
|
|
|
results1 = pd.DataFrame(array, columns=["x1", "x2", "x3"]) |
212
|
|
|
|
213
|
|
|
memory = LongTermMemory(model_name, path=path) |
214
|
|
|
memory.save(results1, objective_function) |
215
|
|
|
|
216
|
|
|
results2 = memory.load() |
217
|
|
|
|
218
|
|
|
memory.remove_model_data() |
219
|
|
|
|
220
|
|
|
assert results1.equals(results2) |
221
|
|
|
|
222
|
|
|
|
223
|
|
|
def test_ltm_str(): |
224
|
|
|
path = "./" |
225
|
|
|
model_name = "test_ltm_str" |
226
|
|
|
array = ["str1", "str2", "str3"] |
227
|
|
|
results1 = pd.DataFrame( |
228
|
|
|
[array, array, array, array, array], columns=["x1", "x2", "x3"] |
229
|
|
|
) |
230
|
|
|
|
231
|
|
|
memory = LongTermMemory(model_name, path=path) |
232
|
|
|
memory.save(results1, objective_function) |
233
|
|
|
|
234
|
|
|
results2 = memory.load() |
235
|
|
|
|
236
|
|
|
memory.remove_model_data() |
237
|
|
|
|
238
|
|
|
assert results1.equals(results2) |
239
|
|
|
|
240
|
|
|
|
241
|
|
|
def func1(): |
242
|
|
|
pass |
243
|
|
|
|
244
|
|
|
|
245
|
|
|
def func2(): |
246
|
|
|
pass |
247
|
|
|
|
248
|
|
|
|
249
|
|
|
def func3(): |
250
|
|
|
pass |
251
|
|
|
|
252
|
|
|
|
253
|
|
|
def test_ltm_func(): |
254
|
|
|
path = "./" |
255
|
|
|
model_name = "test_ltm_func" |
256
|
|
|
|
257
|
|
|
array = [func1, func2, func3] |
258
|
|
|
results1 = pd.DataFrame( |
259
|
|
|
[array, array, array, array, array], columns=["x1", "x2", "x3"] |
260
|
|
|
) |
261
|
|
|
|
262
|
|
|
memory = LongTermMemory(model_name, path=path) |
263
|
|
|
memory.save(results1, objective_function) |
264
|
|
|
|
265
|
|
|
results2 = memory.load() |
266
|
|
|
|
267
|
|
|
memory.remove_model_data() |
268
|
|
|
|
269
|
|
|
func_str_list = [] |
270
|
|
|
for func_ in array: |
271
|
|
|
func_str_list.append(inspect.getsource(func_)) |
272
|
|
|
|
273
|
|
|
for func_ in list(results2.values.flatten()): |
274
|
|
|
func_str_ = inspect.getsource(func_) |
275
|
|
|
if func_str_ not in func_str_list: |
276
|
|
|
assert False |
277
|
|
|
|
278
|
|
|
|
279
|
|
|
class class1: |
280
|
|
|
name = "class1" |
281
|
|
|
|
282
|
|
|
|
283
|
|
|
class class2: |
284
|
|
|
name = "class2" |
285
|
|
|
|
286
|
|
|
|
287
|
|
|
class class3: |
288
|
|
|
name = "class3" |
289
|
|
|
|
290
|
|
|
|
291
|
|
|
def test_ltm_class(): |
292
|
|
|
path = "./" |
293
|
|
|
model_name = "test_ltm_class" |
294
|
|
|
|
295
|
|
|
array = [class1, class2, class3] |
296
|
|
|
results1 = pd.DataFrame( |
297
|
|
|
[array, array, array, array, array], columns=["x1", "x2", "x3"] |
298
|
|
|
) |
299
|
|
|
|
300
|
|
|
memory = LongTermMemory(model_name, path=path) |
301
|
|
|
memory.save(results1, objective_function) |
302
|
|
|
|
303
|
|
|
results2 = memory.load() |
304
|
|
|
|
305
|
|
|
memory.remove_model_data() |
306
|
|
|
|
307
|
|
|
for class_1 in list(results2.values.flatten()): |
308
|
|
|
assert_ = False |
309
|
|
|
for class_2 in array: |
310
|
|
|
if class_1.name == class_2.name: |
311
|
|
|
assert_ = True |
312
|
|
|
break |
313
|
|
|
|
314
|
|
|
assert assert_ |
315
|
|
|
|
316
|
|
|
|
317
|
|
|
class class1_: |
318
|
|
|
def __init__(self): |
319
|
|
|
self.name = "class1_" |
320
|
|
|
|
321
|
|
|
|
322
|
|
|
class class2_: |
323
|
|
|
def __init__(self): |
324
|
|
|
self.name = "class2_" |
325
|
|
|
|
326
|
|
|
|
327
|
|
|
class class3_: |
328
|
|
|
def __init__(self): |
329
|
|
|
self.name = "class3_" |
330
|
|
|
|
331
|
|
|
|
332
|
|
|
def test_ltm_obj(): |
333
|
|
|
path = "./" |
334
|
|
|
model_name = "test_ltm_obj" |
335
|
|
|
|
336
|
|
|
array = [class1_(), class2_(), class3_()] |
337
|
|
|
results1 = pd.DataFrame( |
338
|
|
|
[array, array, array, array, array], columns=["x1", "x2", "x3"] |
339
|
|
|
) |
340
|
|
|
|
341
|
|
|
memory = LongTermMemory(model_name, path=path) |
342
|
|
|
memory.save(results1, objective_function) |
343
|
|
|
|
344
|
|
|
results2 = memory.load() |
345
|
|
|
|
346
|
|
|
memory.remove_model_data() |
347
|
|
|
|
348
|
|
|
for obj_1 in list(results2.values.flatten()): |
349
|
|
|
assert_ = False |
350
|
|
|
for obj_2 in array: |
351
|
|
|
if obj_1.name == obj_2.name: |
352
|
|
|
assert_ = True |
353
|
|
|
break |
354
|
|
|
|
355
|
|
|
assert assert_ |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
def test_ltm_list(): |
359
|
|
|
path = "./" |
360
|
|
|
model_name = "test_ltm_list" |
361
|
|
|
|
362
|
|
|
dict_ = {"x1": [[1, 1, 1], [1, 2, 1], [1, 1, 2]]} |
363
|
|
|
results1 = pd.DataFrame(dict_) |
364
|
|
|
print("\n results1 \n", results1) |
365
|
|
|
|
366
|
|
|
memory = LongTermMemory(model_name, path=path) |
367
|
|
|
memory.save(results1, objective_function) |
368
|
|
|
|
369
|
|
|
results2 = memory.load() |
370
|
|
|
|
371
|
|
|
memory.remove_model_data() |
372
|
|
|
print("\n results2 \n", results2) |
373
|
|
|
|
374
|
|
|
for list_1 in list(results2.values.flatten()): |
375
|
|
|
assert_ = False |
376
|
|
|
for list_2 in list(dict_.values())[0]: |
377
|
|
|
print("\n list_1 ", list_1) |
378
|
|
|
print("list_2 ", list_2) |
379
|
|
|
print(list_1 == list_2) |
380
|
|
|
|
381
|
|
|
if list_1 == list_2: |
382
|
|
|
assert_ = True |
383
|
|
|
break |
384
|
|
|
|
385
|
|
|
assert assert_ |
386
|
|
|
|
387
|
|
|
|