1
|
|
|
import os |
2
|
|
|
import inspect |
3
|
|
|
import pytest |
4
|
|
|
|
5
|
|
|
from sklearn.datasets import load_iris |
6
|
|
|
from sklearn.neighbors import KNeighborsClassifier |
7
|
|
|
from sklearn.model_selection import cross_val_score |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import pandas as pd |
11
|
|
|
|
12
|
|
|
from hyperactive import Hyperactive, LongTermMemory |
13
|
|
|
|
14
|
|
|
data = load_iris() |
15
|
|
|
X, y = data.data, data.target |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def func1(): |
19
|
|
|
pass |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
def func2(): |
23
|
|
|
pass |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def func3(): |
27
|
|
|
pass |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class class1: |
31
|
|
|
pass |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class class2: |
35
|
|
|
pass |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class class3: |
39
|
|
|
pass |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class class1_: |
43
|
|
|
def __init__(self): |
44
|
|
|
pass |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
class class2_: |
48
|
|
|
def __init__(self): |
49
|
|
|
pass |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class class3_: |
53
|
|
|
def __init__(self): |
54
|
|
|
pass |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
search_space_int0 = { |
58
|
|
|
"x1": list(range(2, 30, 1)), |
59
|
|
|
} |
60
|
|
|
|
61
|
|
|
search_space_int1 = { |
62
|
|
|
"x1": list(range(2, 30, 1)), |
63
|
|
|
"x2": list(range(0, 101, 1)), |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
search_space_int2 = { |
67
|
|
|
"x1": list(range(2, 30, 1)), |
68
|
|
|
"x2": list(range(-100, 1, 1)), |
69
|
|
|
} |
70
|
|
|
|
71
|
|
|
search_space_float = { |
72
|
|
|
"x1": list(range(2, 30, 1)), |
73
|
|
|
"x2": list(np.arange(0, 0.003, 0.001)), |
74
|
|
|
} |
75
|
|
|
|
76
|
|
|
search_space_str = { |
77
|
|
|
"x1": list(range(2, 30, 1)), |
78
|
|
|
"x2": ["0", "1", "2"], |
79
|
|
|
} |
80
|
|
|
|
81
|
|
|
search_space_func = { |
82
|
|
|
"x1": list(range(2, 30, 1)), |
83
|
|
|
"x2": [func1, func2, func3], |
84
|
|
|
} |
85
|
|
|
|
86
|
|
|
|
87
|
|
|
search_space_class = { |
88
|
|
|
"x1": list(range(2, 30, 1)), |
89
|
|
|
"x2": [class1, class2, class3], |
90
|
|
|
} |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
search_space_obj = { |
94
|
|
|
"x1": list(range(2, 30, 1)), |
95
|
|
|
"x2": [class1_(), class2_(), class3_()], |
96
|
|
|
} |
97
|
|
|
|
98
|
|
|
search_space_lists = { |
99
|
|
|
"x1": list(range(2, 30, 1)), |
100
|
|
|
"x2": [[1, 1, 1], [1, 2, 1], [1, 1, 2]], |
101
|
|
|
} |
102
|
|
|
|
103
|
|
|
|
104
|
|
|
def objective_function(opt): |
105
|
|
|
score = -opt["x1"] * opt["x1"] |
106
|
|
|
return score |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def model(para): |
110
|
|
|
knr = KNeighborsClassifier(n_neighbors=para["x1"]) |
111
|
|
|
scores = cross_val_score(knr, X, y, cv=2) |
112
|
|
|
score = scores.mean() |
113
|
|
|
|
114
|
|
|
return score |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
def keras_model(para): |
118
|
|
|
pass |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def compare_0(results1, results2): |
122
|
|
|
assert results1.equals(results2) |
123
|
|
|
|
124
|
|
|
|
125
|
|
|
def compare_obj(results1, results2): |
126
|
|
|
obj1_list = list(results1["x2"].values) |
127
|
|
|
obj2_list = list(results1["x2"].values) |
128
|
|
|
|
129
|
|
|
for obj1, obj2 in zip(obj1_list, obj2_list): |
130
|
|
|
if obj1 != obj2: |
131
|
|
|
assert False |
132
|
|
|
|
133
|
|
|
|
134
|
|
|
search_space_para = ( |
135
|
|
|
"search_space", |
136
|
|
|
[ |
137
|
|
|
(search_space_int0, compare_0), |
138
|
|
|
(search_space_int1, compare_0), |
139
|
|
|
(search_space_int2, compare_0), |
140
|
|
|
(search_space_float, compare_0), |
141
|
|
|
(search_space_str, compare_0), |
142
|
|
|
(search_space_func, compare_obj), |
143
|
|
|
(search_space_class, compare_obj), |
144
|
|
|
(search_space_obj, compare_obj), |
145
|
|
|
(search_space_lists, compare_obj), |
146
|
|
|
], |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
path_para = ( |
150
|
|
|
"path", |
151
|
|
|
[("."), ("./"), (None), ("./dir/dir/")], |
152
|
|
|
) |
153
|
|
|
|
154
|
|
|
|
155
|
|
|
objective_function_para = ( |
156
|
|
|
"objective_function", |
157
|
|
|
[ |
158
|
|
|
(objective_function), |
159
|
|
|
(model), |
160
|
|
|
], |
161
|
|
|
) |
162
|
|
|
|
163
|
|
|
|
164
|
|
|
@pytest.mark.parametrize(*objective_function_para) |
165
|
|
|
@pytest.mark.parametrize(*path_para) |
166
|
|
|
@pytest.mark.parametrize(*search_space_para) |
167
|
|
|
def test_ltm_0(objective_function, search_space, path): |
168
|
|
|
(search_space, compare) = search_space |
169
|
|
|
|
170
|
|
|
print("\n objective_function \n", objective_function) |
171
|
|
|
print("\n search_space \n", search_space) |
172
|
|
|
print("\n compare \n", compare) |
173
|
|
|
print("\n path \n", path) |
174
|
|
|
|
175
|
|
|
model_name = str(objective_function.__name__) |
176
|
|
|
|
177
|
|
|
hyper = Hyperactive() |
178
|
|
|
hyper.add_search( |
179
|
|
|
objective_function, search_space, n_iter=10, initialize={"random": 1} |
180
|
|
|
) |
181
|
|
|
hyper.run() |
182
|
|
|
results1 = hyper.results(objective_function) |
183
|
|
|
|
184
|
|
|
memory = LongTermMemory(model_name, path=path) |
185
|
|
|
memory.save(results1, objective_function) |
186
|
|
|
results2 = memory.load() |
187
|
|
|
|
188
|
|
|
print("\n results1 \n", results1) |
189
|
|
|
print("\n results2 \n", results2) |
190
|
|
|
|
191
|
|
|
memory.remove_model_data() |
192
|
|
|
|
193
|
|
|
compare(results1, results2) |
194
|
|
|
|
195
|
|
|
|
196
|
|
|
@pytest.mark.parametrize(*objective_function_para) |
197
|
|
|
@pytest.mark.parametrize(*path_para) |
198
|
|
|
@pytest.mark.parametrize(*search_space_para) |
199
|
|
|
def test_ltm_1(objective_function, search_space, path): |
200
|
|
|
(search_space, compare) = search_space |
201
|
|
|
|
202
|
|
|
print("\n objective_function \n", objective_function) |
203
|
|
|
print("\n search_space \n", search_space) |
204
|
|
|
print("\n compare \n", compare) |
205
|
|
|
print("\n path \n", path) |
206
|
|
|
|
207
|
|
|
model_name = str(objective_function.__name__) |
208
|
|
|
memory = LongTermMemory(model_name, path=path) |
209
|
|
|
|
210
|
|
|
hyper1 = Hyperactive() |
211
|
|
|
hyper1.add_search( |
212
|
|
|
objective_function, |
213
|
|
|
search_space, |
214
|
|
|
n_iter=10, |
215
|
|
|
initialize={"random": 1}, |
216
|
|
|
long_term_memory=memory, |
217
|
|
|
) |
218
|
|
|
hyper1.run() |
219
|
|
|
results1 = hyper1.results(objective_function) |
220
|
|
|
|
221
|
|
|
hyper2 = Hyperactive() |
222
|
|
|
hyper2.add_search( |
223
|
|
|
objective_function, |
224
|
|
|
search_space, |
225
|
|
|
n_iter=10, |
226
|
|
|
initialize={"random": 1}, |
227
|
|
|
long_term_memory=memory, |
228
|
|
|
) |
229
|
|
|
hyper2.run() |
230
|
|
|
results2 = hyper2.results(objective_function) |
231
|
|
|
memory.remove_model_data() |
232
|
|
|
|
233
|
|
|
print("\n results1 \n", results1) |
234
|
|
|
print("\n results2 \n", results2) |
235
|
|
|
|