1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
from gradient_free_optimizers import ( |
9
|
|
|
HillClimbingOptimizer as _HillClimbingOptimizer, |
10
|
|
|
StochasticHillClimbingOptimizer as _StochasticHillClimbingOptimizer, |
11
|
|
|
RepulsingHillClimbingOptimizer as _RepulsingHillClimbingOptimizer, |
12
|
|
|
RandomSearchOptimizer as _RandomSearchOptimizer, |
13
|
|
|
RandomRestartHillClimbingOptimizer as _RandomRestartHillClimbingOptimizer, |
14
|
|
|
RandomAnnealingOptimizer as _RandomAnnealingOptimizer, |
15
|
|
|
SimulatedAnnealingOptimizer as _SimulatedAnnealingOptimizer, |
16
|
|
|
ParallelTemperingOptimizer as _ParallelTemperingOptimizer, |
17
|
|
|
ParticleSwarmOptimizer as _ParticleSwarmOptimizer, |
18
|
|
|
EvolutionStrategyOptimizer as _EvolutionStrategyOptimizer, |
19
|
|
|
BayesianOptimizer as _BayesianOptimizer, |
20
|
|
|
TreeStructuredParzenEstimators as _TreeStructuredParzenEstimators, |
21
|
|
|
DecisionTreeOptimizer as _DecisionTreeOptimizer, |
22
|
|
|
EnsembleOptimizer as _EnsembleOptimizer, |
23
|
|
|
) |
24
|
|
|
|
25
|
|
|
from .hyper_gradient_trafo import HyperGradientTrafo |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class DictClass: |
29
|
|
|
def __init__(self): |
30
|
|
|
self.para_dict = {} |
31
|
|
|
|
32
|
|
|
def __getitem__(self, key): |
33
|
|
|
return self.para_dict[key] |
34
|
|
|
|
35
|
|
|
def keys(self): |
36
|
|
|
return self.para_dict.keys() |
37
|
|
|
|
38
|
|
|
def values(self): |
39
|
|
|
return self.para_dict.values() |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class TrafoClass: |
43
|
|
|
def __init__(self, *args, **kwargs): |
44
|
|
|
pass |
45
|
|
|
|
46
|
|
|
def _convert_args2gfo(self, memory_warm_start): |
47
|
|
|
memory_warm_start = self.trafo.trafo_memory_warm_start(memory_warm_start) |
48
|
|
|
|
49
|
|
|
return memory_warm_start |
50
|
|
|
|
51
|
|
|
def _positions2results(self, positions): |
52
|
|
|
results_dict = {} |
53
|
|
|
|
54
|
|
|
for para_name in self.conv.para_names: |
55
|
|
|
values_list = self.search_space[para_name] |
56
|
|
|
pos_ = positions[para_name].values |
57
|
|
|
values_ = [values_list[idx] for idx in pos_] |
58
|
|
|
results_dict[para_name] = values_ |
59
|
|
|
|
60
|
|
|
results = pd.DataFrame.from_dict(results_dict) |
61
|
|
|
|
62
|
|
|
diff_list = np.setdiff1d(positions.columns, results.columns) |
63
|
|
|
results[diff_list] = positions[diff_list] |
64
|
|
|
|
65
|
|
|
return results |
66
|
|
|
|
67
|
|
|
def _convert_results2hyper(self): |
68
|
|
|
self.eval_time = np.array(self.optimizer.eval_times).sum() |
69
|
|
|
self.iter_time = np.array(self.optimizer.iter_times).sum() |
70
|
|
|
|
71
|
|
|
value = self.trafo.para2value(self.optimizer.best_para) |
72
|
|
|
position = self.trafo.position2value(value) |
73
|
|
|
best_para = self.trafo.value2para(position) |
74
|
|
|
|
75
|
|
|
self.best_para = best_para |
76
|
|
|
self.best_score = self.optimizer.best_score |
77
|
|
|
self.positions = self.optimizer.results |
78
|
|
|
|
79
|
|
|
self.results = self._positions2results(self.positions) |
80
|
|
|
|
81
|
|
|
self.memory_positions = self.trafo._memory2dataframe(self.optimizer.memory_dict) |
82
|
|
|
self.memory_values_df = self._positions2results(self.memory_positions) |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
class _BaseOptimizer_(DictClass, TrafoClass): |
86
|
|
|
def __init__(self, **opt_params): |
87
|
|
|
super().__init__() |
88
|
|
|
self.opt_params = opt_params |
89
|
|
|
|
90
|
|
|
def init(self, search_space, initialize={"grid": 8, "random": 4, "vertices": 8}): |
91
|
|
|
self.search_space = search_space |
92
|
|
|
|
93
|
|
|
self.trafo = HyperGradientTrafo(search_space) |
94
|
|
|
|
95
|
|
|
initialize = self.trafo.trafo_initialize(initialize) |
96
|
|
|
search_space_positions = self.trafo.search_space_positions |
97
|
|
|
|
98
|
|
|
self.optimizer = self._OptimizerClass( |
99
|
|
|
search_space_positions, initialize, **self.opt_params |
100
|
|
|
) |
101
|
|
|
|
102
|
|
|
self.conv = self.optimizer.conv |
103
|
|
|
|
104
|
|
|
def print_info(self, *args): |
105
|
|
|
self.optimizer.print_info(*args) |
106
|
|
|
|
107
|
|
|
def search( |
108
|
|
|
self, |
109
|
|
|
objective_function, |
110
|
|
|
n_iter, |
111
|
|
|
warm_start=None, |
112
|
|
|
max_time=None, |
113
|
|
|
max_score=None, |
114
|
|
|
memory=True, |
115
|
|
|
memory_warm_start=None, |
116
|
|
|
verbosity={ |
117
|
|
|
"progress_bar": True, |
118
|
|
|
"print_results": True, |
119
|
|
|
"print_times": True, |
120
|
|
|
}, |
121
|
|
|
random_state=None, |
122
|
|
|
nth_process=None, |
123
|
|
|
): |
124
|
|
|
memory_warm_start = self._convert_args2gfo(memory_warm_start) |
125
|
|
|
|
126
|
|
|
self.optimizer.search( |
127
|
|
|
objective_function, |
128
|
|
|
n_iter, |
129
|
|
|
max_time, |
130
|
|
|
max_score, |
131
|
|
|
memory, |
132
|
|
|
memory_warm_start, |
133
|
|
|
verbosity, |
134
|
|
|
random_state, |
135
|
|
|
nth_process, |
136
|
|
|
) |
137
|
|
|
|
138
|
|
|
self._convert_results2hyper() |
139
|
|
|
|
140
|
|
|
|
141
|
|
|
class HillClimbingOptimizer(_BaseOptimizer_): |
142
|
|
|
def __init__(self, **opt_params): |
143
|
|
|
super().__init__(**opt_params) |
144
|
|
|
self._OptimizerClass = _HillClimbingOptimizer |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
class StochasticHillClimbingOptimizer(_BaseOptimizer_): |
148
|
|
|
def __init__(self, **opt_params): |
149
|
|
|
super().__init__(**opt_params) |
150
|
|
|
self._OptimizerClass = _StochasticHillClimbingOptimizer |
151
|
|
|
|
152
|
|
|
|
153
|
|
|
class RepulsingHillClimbingOptimizer(_BaseOptimizer_): |
154
|
|
|
def __init__(self, **opt_params): |
155
|
|
|
super().__init__(**opt_params) |
156
|
|
|
self._OptimizerClass = _RepulsingHillClimbingOptimizer |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
class RandomSearchOptimizer(_BaseOptimizer_): |
160
|
|
|
def __init__(self, **opt_params): |
161
|
|
|
super().__init__(**opt_params) |
162
|
|
|
self._OptimizerClass = _RandomSearchOptimizer |
163
|
|
|
|
164
|
|
|
|
165
|
|
|
class RandomRestartHillClimbingOptimizer(_BaseOptimizer_): |
166
|
|
|
def __init__(self, **opt_params): |
167
|
|
|
super().__init__(**opt_params) |
168
|
|
|
self._OptimizerClass = _RandomRestartHillClimbingOptimizer |
169
|
|
|
|
170
|
|
|
|
171
|
|
|
class RandomAnnealingOptimizer(_BaseOptimizer_): |
172
|
|
|
def __init__(self, **opt_params): |
173
|
|
|
super().__init__(**opt_params) |
174
|
|
|
self._OptimizerClass = _RandomAnnealingOptimizer |
175
|
|
|
|
176
|
|
|
|
177
|
|
|
class SimulatedAnnealingOptimizer(_BaseOptimizer_): |
178
|
|
|
def __init__(self, **opt_params): |
179
|
|
|
super().__init__(**opt_params) |
180
|
|
|
self._OptimizerClass = _SimulatedAnnealingOptimizer |
181
|
|
|
|
182
|
|
|
|
183
|
|
|
class ParallelTemperingOptimizer(_BaseOptimizer_): |
184
|
|
|
def __init__(self, **opt_params): |
185
|
|
|
super().__init__(**opt_params) |
186
|
|
|
self._OptimizerClass = _ParallelTemperingOptimizer |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
class ParticleSwarmOptimizer(_BaseOptimizer_): |
190
|
|
|
def __init__(self, **opt_params): |
191
|
|
|
super().__init__(**opt_params) |
192
|
|
|
self._OptimizerClass = _ParticleSwarmOptimizer |
193
|
|
|
|
194
|
|
|
|
195
|
|
|
class EvolutionStrategyOptimizer(_BaseOptimizer_): |
196
|
|
|
def __init__(self, **opt_params): |
197
|
|
|
super().__init__(**opt_params) |
198
|
|
|
self._OptimizerClass = _EvolutionStrategyOptimizer |
199
|
|
|
|
200
|
|
|
|
201
|
|
|
class BayesianOptimizer(_BaseOptimizer_): |
202
|
|
|
def __init__(self, **opt_params): |
203
|
|
|
super().__init__(**opt_params) |
204
|
|
|
self._OptimizerClass = _BayesianOptimizer |
205
|
|
|
|
206
|
|
|
|
207
|
|
|
class TreeStructuredParzenEstimators(_BaseOptimizer_): |
208
|
|
|
def __init__(self, **opt_params): |
209
|
|
|
super().__init__(**opt_params) |
210
|
|
|
self._OptimizerClass = _TreeStructuredParzenEstimators |
211
|
|
|
|
212
|
|
|
|
213
|
|
|
class DecisionTreeOptimizer(_BaseOptimizer_): |
214
|
|
|
def __init__(self, **opt_params): |
215
|
|
|
super().__init__(**opt_params) |
216
|
|
|
self._OptimizerClass = _DecisionTreeOptimizer |
217
|
|
|
|
218
|
|
|
|
219
|
|
|
class EnsembleOptimizer(_BaseOptimizer_): |
220
|
|
|
def __init__(self, **opt_params): |
221
|
|
|
super().__init__(**opt_params) |
222
|
|
|
self._OptimizerClass = _EnsembleOptimizer |
223
|
|
|
|