1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class Converter: |
10
|
|
|
def __init__(self, search_space): |
11
|
|
|
self.search_space = search_space |
12
|
|
|
self.para_names = list(self.search_space.keys()) |
13
|
|
|
|
14
|
|
|
def value2position(self, value): |
15
|
|
|
position = [] |
16
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
17
|
|
|
pos = np.abs(value[n] - space_dim).argmin() |
18
|
|
|
position.append(pos) |
19
|
|
|
|
20
|
|
|
return np.array(position).astype(int) |
21
|
|
|
|
22
|
|
|
def value2para(self, value): |
23
|
|
|
para = {} |
24
|
|
|
for key, p_ in zip(self.para_names, value): |
25
|
|
|
para[key] = p_ |
26
|
|
|
|
27
|
|
|
return para |
28
|
|
|
|
29
|
|
|
def position2value(self, position): |
30
|
|
|
value = [] |
31
|
|
|
|
32
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
33
|
|
|
value.append(space_dim[position[n]]) |
34
|
|
|
|
35
|
|
|
return np.array(value) |
36
|
|
|
|
37
|
|
|
def positions2values(self, positions): |
38
|
|
|
values_temp = [] |
39
|
|
|
positions_np = np.array(positions) |
40
|
|
|
|
41
|
|
|
for n, space_dim in enumerate(self.search_space_values): |
42
|
|
|
pos_1d = positions_np[:, n] |
43
|
|
|
value_ = np.take(space_dim, pos_1d, axis=0) |
44
|
|
|
values_temp.append(value_) |
45
|
|
|
|
46
|
|
|
values = list(np.array(values_temp).T) |
47
|
|
|
return values |
48
|
|
|
|
49
|
|
|
def para2value(self, para): |
50
|
|
|
value = [] |
51
|
|
|
for para_name in self.para_names: |
52
|
|
|
value.append(para[para_name]) |
53
|
|
|
|
54
|
|
|
return np.array(value) |
55
|
|
|
|
56
|
|
|
def _memory2dataframe(self, memory_dict): |
57
|
|
|
positions = [np.array(pos).astype(int) for pos in list(memory_dict.keys())] |
58
|
|
|
scores = list(memory_dict.values()) |
59
|
|
|
|
60
|
|
|
memory_positions = pd.DataFrame(positions, columns=self.para_names) |
61
|
|
|
memory_positions["score"] = scores |
62
|
|
|
|
63
|
|
|
return memory_positions |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
class HyperGradientTrafo(Converter): |
67
|
|
|
def __init__(self, search_space): |
68
|
|
|
super().__init__(search_space) |
69
|
|
|
self.search_space_values = list(self.search_space.values()) |
70
|
|
|
|
71
|
|
|
search_space_positions = {} |
72
|
|
|
for key in search_space.keys(): |
73
|
|
|
search_space_positions[key] = np.array(range(len(search_space[key]))) |
74
|
|
|
self.search_space_positions = search_space_positions |
75
|
|
|
|
76
|
|
|
def trafo_initialize(self, initialize): |
77
|
|
|
if "warm_start" in list(initialize.keys()): |
78
|
|
|
warm_start = initialize["warm_start"] |
79
|
|
|
warm_start_gfo = [] |
80
|
|
|
for warm_start_ in warm_start: |
81
|
|
|
value = self.para2value(warm_start_) |
82
|
|
|
position = self.value2position(value) |
83
|
|
|
pos_para = self.value2para(position) |
84
|
|
|
|
85
|
|
|
warm_start_gfo.append(pos_para) |
86
|
|
|
|
87
|
|
|
initialize["warm_start"] = warm_start_gfo |
88
|
|
|
|
89
|
|
|
return initialize |
90
|
|
|
|
91
|
|
|
def get_list_positions(self, list1_values, search_dim): |
92
|
|
|
list_positions = [] |
93
|
|
|
|
94
|
|
|
for value2 in list1_values: |
95
|
|
|
pos_appended = False |
96
|
|
|
for value1 in search_dim: |
97
|
|
|
if value1 == value2: |
98
|
|
|
list_positions.append(search_dim.index(value1)) |
99
|
|
|
pos_appended = True |
100
|
|
|
break |
101
|
|
|
|
102
|
|
|
if not pos_appended: |
103
|
|
|
list_positions.append(None) |
104
|
|
|
|
105
|
|
|
return list_positions |
106
|
|
|
|
107
|
|
|
def trafo_memory_warm_start(self, results): |
108
|
|
|
if results is None: |
109
|
|
|
return results |
110
|
|
|
|
111
|
|
|
df_positions_dict = {} |
112
|
|
|
for para_name in self.para_names: |
113
|
|
|
list1_values = list(results[para_name].values) |
114
|
|
|
search_dim = self.search_space[para_name] |
115
|
|
|
""" |
116
|
|
|
list1_positions = [ |
117
|
|
|
search_dim.index(value) if value in search_dim else None |
118
|
|
|
for value in list1_values |
119
|
|
|
] |
120
|
|
|
""" |
121
|
|
|
|
122
|
|
|
""" |
123
|
|
|
list1_positions = [ |
124
|
|
|
search_dim.index(value1) |
125
|
|
|
for value2 in list1_values |
126
|
|
|
for value1 in search_dim |
127
|
|
|
if value1 == value2 |
128
|
|
|
] |
129
|
|
|
""" |
130
|
|
|
list1_positions = self.get_list_positions(list1_values, search_dim) |
131
|
|
|
|
132
|
|
|
# remove None |
133
|
|
|
# list1_positions_ = [x for x in list1_positions if x is not None] |
134
|
|
|
df_positions_dict[para_name] = list1_positions |
135
|
|
|
|
136
|
|
|
results_new = pd.DataFrame(df_positions_dict) |
137
|
|
|
results_new["score"] = results["score"] |
138
|
|
|
results_new.dropna(how="any", inplace=True) |
139
|
|
|
|
140
|
|
|
return results_new |
141
|
|
|
|