|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import sys |
|
6
|
|
|
import glob |
|
7
|
|
|
|
|
8
|
|
|
# import inspect |
|
9
|
|
|
# import imageio |
|
10
|
|
|
|
|
11
|
|
|
import hiplot as hip |
|
12
|
|
|
import numpy as np |
|
13
|
|
|
import pandas as pd |
|
14
|
|
|
|
|
15
|
|
|
import streamlit as st |
|
16
|
|
|
import plotly.express as px |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
def _score_statistics(search_data): |
|
20
|
|
|
values_ = search_data["score"].values |
|
21
|
|
|
|
|
22
|
|
|
mean_ = values_.mean() |
|
23
|
|
|
std_ = values_.std() |
|
24
|
|
|
min_ = np.amin(values_) |
|
25
|
|
|
max_ = np.amax(values_) |
|
26
|
|
|
|
|
27
|
|
|
df_data = pd.DataFrame( |
|
28
|
|
|
[[mean_, std_, min_, max_]], |
|
29
|
|
|
index=["score"], |
|
30
|
|
|
columns=["mean", "std", "min", "max"], |
|
31
|
|
|
) |
|
32
|
|
|
|
|
33
|
|
|
col1, col2 = st.beta_columns(2) |
|
34
|
|
|
|
|
35
|
|
|
col1.header("Score statistics") |
|
36
|
|
|
col1.text("") |
|
37
|
|
|
col2.text("") |
|
38
|
|
|
|
|
39
|
|
|
col1.table(df_data) |
|
40
|
|
|
|
|
41
|
|
|
def _score_statistics_plot(search_data): |
|
42
|
|
|
fig = px.histogram( |
|
43
|
|
|
search_data, x="score", nbins=int(len(search_data)) |
|
44
|
|
|
).update_layout(width=1000, height=300) |
|
45
|
|
|
col2.plotly_chart(fig) |
|
46
|
|
|
|
|
47
|
|
|
_score_statistics_plot(search_data) |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
def _1d_scatter(search_data): |
|
51
|
|
|
para_names = search_data.columns.drop("score") |
|
52
|
|
|
|
|
53
|
|
|
st.text("") |
|
54
|
|
|
col1, col2 = st.beta_columns(2) |
|
55
|
|
|
|
|
56
|
|
|
col1.header("1D Scatter plot") |
|
57
|
|
|
col1.text("") |
|
58
|
|
|
|
|
59
|
|
|
scatter1_para1 = col1.selectbox( |
|
60
|
|
|
"1D scatter plot parameter 1", |
|
61
|
|
|
para_names, |
|
62
|
|
|
index=0, |
|
63
|
|
|
) |
|
64
|
|
|
|
|
65
|
|
|
def _1d_scatter_plot(search_data): |
|
66
|
|
|
fig = px.scatter( |
|
67
|
|
|
search_data, x=scatter1_para1, y=search_data["score"] |
|
68
|
|
|
).update_layout(width=1000, height=600) |
|
69
|
|
|
col2.plotly_chart(fig) |
|
70
|
|
|
|
|
71
|
|
|
_1d_scatter_plot(search_data) |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
def _2d_scatter(search_data): |
|
75
|
|
|
para_names = search_data.columns.drop("score") |
|
76
|
|
|
|
|
77
|
|
|
st.text("") |
|
78
|
|
|
col1, col2 = st.beta_columns(2) |
|
79
|
|
|
|
|
80
|
|
|
col1.header("2D Scatter plot") |
|
81
|
|
|
col1.text("") |
|
82
|
|
|
|
|
83
|
|
|
scatter2_para1 = col1.selectbox( |
|
84
|
|
|
"2D scatter plot parameter 1", |
|
85
|
|
|
para_names, |
|
86
|
|
|
index=0, |
|
87
|
|
|
) |
|
88
|
|
|
scatter2_para2 = col1.selectbox( |
|
89
|
|
|
"2D scatter plot parameter 2", |
|
90
|
|
|
para_names, |
|
91
|
|
|
index=1, |
|
92
|
|
|
) |
|
93
|
|
|
|
|
94
|
|
|
def _2d_scatter_plot(search_data): |
|
95
|
|
|
fig = px.scatter( |
|
96
|
|
|
search_data, x=scatter2_para1, y=scatter2_para2, color="score" |
|
97
|
|
|
).update_layout(width=1000, height=600) |
|
98
|
|
|
col2.plotly_chart(fig) |
|
99
|
|
|
|
|
100
|
|
|
_2d_scatter_plot(search_data) |
|
101
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
def _3d_scatter(search_data): |
|
104
|
|
|
para_names = search_data.columns.drop("score") |
|
105
|
|
|
|
|
106
|
|
|
st.text("") |
|
107
|
|
|
col1, col2 = st.beta_columns(2) |
|
108
|
|
|
|
|
109
|
|
|
col1.header("3D Scatter plot") |
|
110
|
|
|
col1.text("") |
|
111
|
|
|
|
|
112
|
|
|
scatter3_para1 = col1.selectbox( |
|
113
|
|
|
"3D scatter plot parameter 1", |
|
114
|
|
|
para_names, |
|
115
|
|
|
index=0, |
|
116
|
|
|
) |
|
117
|
|
|
scatter3_para2 = col1.selectbox( |
|
118
|
|
|
"3D scatter plot parameter 2", |
|
119
|
|
|
para_names, |
|
120
|
|
|
index=1, |
|
121
|
|
|
) |
|
122
|
|
|
scatter3_para3 = col1.selectbox( |
|
123
|
|
|
"3D scatter plot parameter 3", |
|
124
|
|
|
para_names, |
|
125
|
|
|
index=2, |
|
126
|
|
|
) |
|
127
|
|
|
|
|
128
|
|
|
def _3d_scatter_plot(search_data): |
|
129
|
|
|
fig = px.scatter_3d( |
|
130
|
|
|
search_data, |
|
131
|
|
|
x=scatter3_para1, |
|
132
|
|
|
y=scatter3_para2, |
|
133
|
|
|
z=scatter3_para3, |
|
134
|
|
|
color="score", |
|
135
|
|
|
).update_layout(width=1000, height=600) |
|
136
|
|
|
col2.plotly_chart(fig) |
|
137
|
|
|
|
|
138
|
|
|
_3d_scatter_plot(search_data) |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
def _parallel_coordinates(search_data): |
|
142
|
|
|
st.text("") |
|
143
|
|
|
col1, col2 = st.beta_columns(2) |
|
144
|
|
|
|
|
145
|
|
|
col1.header("Parallel Corrdinates") |
|
146
|
|
|
col1.text("") |
|
147
|
|
|
col2.text("") |
|
148
|
|
|
|
|
149
|
|
|
xp = hip.Experiment.from_dataframe(search_data) |
|
150
|
|
|
ret_val = xp.display_st(key="key1") |
|
151
|
|
|
|
|
152
|
|
|
|
|
153
|
|
|
plots_dict = { |
|
154
|
|
|
"score_statistics": _score_statistics, |
|
155
|
|
|
"1d_scatter": _1d_scatter, |
|
156
|
|
|
"2d_scatter": _2d_scatter, |
|
157
|
|
|
"3d_scatter": _3d_scatter, |
|
158
|
|
|
"parallel_coordinates": _parallel_coordinates, |
|
159
|
|
|
} |
|
160
|
|
|
|
|
161
|
|
|
|
|
162
|
|
|
st.set_page_config(page_title="Hyperactive Dashboard", layout="wide") |
|
163
|
|
|
path = sys.argv[1] |
|
164
|
|
|
streamlit_plot_args = sys.argv[2:] |
|
165
|
|
|
|
|
166
|
|
|
search_data = pd.read_csv(path) |
|
167
|
|
|
# print("\n search_data \n", search_data) |
|
168
|
|
|
|
|
169
|
|
|
st.title("Hyperactive Dashboard") |
|
170
|
|
|
st.text("") |
|
171
|
|
|
st.text("") |
|
172
|
|
|
|
|
173
|
|
|
|
|
174
|
|
|
if len(search_data) > 0: |
|
175
|
|
|
# --- # create plots in order of "streamlit_plot_args" |
|
176
|
|
|
for streamlit_plot_arg in streamlit_plot_args: |
|
177
|
|
|
plots_dict[streamlit_plot_arg](search_data) |
|
178
|
|
|
|
|
179
|
|
|
else: |
|
180
|
|
|
st.subheader("---> Error: Search data is empty!") |