1
|
|
|
"""Sphere function, a common benchmark for optimization algorithms.""" |
2
|
|
|
# copyright: hyperactive developers, MIT License (see LICENSE file) |
3
|
|
|
|
4
|
|
|
import numpy as np |
5
|
|
|
|
6
|
|
|
from hyperactive.base import BaseExperiment |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class Sphere(BaseExperiment): |
10
|
|
|
r"""Simple Sphere function, common benchmark for optimization algorithms. |
11
|
|
|
|
12
|
|
|
Sphere function parameterized by the formula: |
13
|
|
|
|
14
|
|
|
.. math:: |
15
|
|
|
f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n x_i^2 + c |
16
|
|
|
|
17
|
|
|
where :math:`c` is a constant offset added to the sum of squares, |
18
|
|
|
and :math:`n` is the number of dimensions. |
19
|
|
|
Both :math:`c` (= `const`) and :math:`n` (= `n_dim`) can be set as parameters. |
20
|
|
|
|
21
|
|
|
The function arguments :math:`x_1`, :math:`x_2`, ..., :math:`x_n` |
22
|
|
|
are the input variables of the `score` method, |
23
|
|
|
and are set as `x0`, `x1`, ..., `x[n]` respectively. |
24
|
|
|
|
25
|
|
|
This function is a common test function for optimization algorithms. |
26
|
|
|
|
27
|
|
|
Parameters |
28
|
|
|
---------- |
29
|
|
|
const : float, optional, default=0 |
30
|
|
|
A constant offset added to the sum of squares. |
31
|
|
|
n_dim : int, optional, default=2 |
32
|
|
|
The number of dimensions for the Sphere function. The default is 2. |
33
|
|
|
|
34
|
|
|
Example |
35
|
|
|
------- |
36
|
|
|
>>> from hyperactive.experiment.toy import Sphere |
37
|
|
|
>>> sphere = Sphere(const=0, n_dim=3) |
38
|
|
|
>>> params = {"x0": 1, "x1": 2, "x2": 3} |
39
|
|
|
>>> score, add_info = sphere.score(params) |
40
|
|
|
|
41
|
|
|
Quick call without metadata return or dictionary: |
42
|
|
|
>>> score = sphere(x0=1, x1=2, x2=3) |
43
|
|
|
|
44
|
|
|
Different number of dimensions changes the parameter names: |
45
|
|
|
>>> sphere4D = Sphere(const=0, n_dim=4) |
46
|
|
|
>>> score4D = sphere4D(x0=1, x1=2, x2=3, x3=4) |
47
|
|
|
""" |
48
|
|
|
|
49
|
|
|
_tags = { |
50
|
|
|
"property:randomness": "deterministic", # random or deterministic |
51
|
|
|
# if deterministic, two calls of score will result in the same value |
52
|
|
|
# random = two calls may result in different values; same as "stochastic" |
53
|
|
|
"property:higher_or_lower_is_better": "lower", |
54
|
|
|
# values are "higher", "lower", "mixed" |
55
|
|
|
# whether higher or lower scores are better |
56
|
|
|
} |
57
|
|
|
|
58
|
|
|
def __init__(self, const=0, n_dim=2): |
59
|
|
|
self.const = const |
60
|
|
|
self.n_dim = n_dim |
61
|
|
|
|
62
|
|
|
super().__init__() |
63
|
|
|
|
64
|
|
|
def _paramnames(self): |
65
|
|
|
return [f"x{i}" for i in range(self.n_dim)] |
66
|
|
|
|
67
|
|
|
def _evaluate(self, params): |
68
|
|
|
"""Evaluate the parameters. |
69
|
|
|
|
70
|
|
|
Parameters |
71
|
|
|
---------- |
72
|
|
|
params : dict with string keys |
73
|
|
|
Parameters to evaluate. |
74
|
|
|
|
75
|
|
|
Returns |
76
|
|
|
------- |
77
|
|
|
float |
78
|
|
|
The value of the parameters as per evaluation. |
79
|
|
|
dict |
80
|
|
|
Additional metadata about the search. |
81
|
|
|
""" |
82
|
|
|
params_vec = np.array([params[f"x{i}"] for i in range(self.n_dim)]) |
83
|
|
|
return np.sum(params_vec ** 2) + self.const, {} |
84
|
|
|
|
85
|
|
|
@classmethod |
86
|
|
|
def get_test_params(cls, parameter_set="default"): |
87
|
|
|
"""Return testing parameter settings for the skbase object. |
88
|
|
|
|
89
|
|
|
``get_test_params`` is a unified interface point to store |
90
|
|
|
parameter settings for testing purposes. This function is also |
91
|
|
|
used in ``create_test_instance`` and ``create_test_instances_and_names`` |
92
|
|
|
to construct test instances. |
93
|
|
|
|
94
|
|
|
``get_test_params`` should return a single ``dict``, or a ``list`` of ``dict``. |
95
|
|
|
|
96
|
|
|
Each ``dict`` is a parameter configuration for testing, |
97
|
|
|
and can be used to construct an "interesting" test instance. |
98
|
|
|
A call to ``cls(**params)`` should |
99
|
|
|
be valid for all dictionaries ``params`` in the return of ``get_test_params``. |
100
|
|
|
|
101
|
|
|
The ``get_test_params`` need not return fixed lists of dictionaries, |
102
|
|
|
it can also return dynamic or stochastic parameter settings. |
103
|
|
|
|
104
|
|
|
Parameters |
105
|
|
|
---------- |
106
|
|
|
parameter_set : str, default="default" |
107
|
|
|
Name of the set of test parameters to return, for use in tests. If no |
108
|
|
|
special parameters are defined for a value, will return `"default"` set. |
109
|
|
|
|
110
|
|
|
Returns |
111
|
|
|
------- |
112
|
|
|
params : dict or list of dict, default = {} |
113
|
|
|
Parameters to create testing instances of the class |
114
|
|
|
Each dict are parameters to construct an "interesting" test instance, i.e., |
115
|
|
|
`MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. |
116
|
|
|
`create_test_instance` uses the first (or only) dictionary in `params` |
117
|
|
|
""" |
118
|
|
|
params0 = {} |
119
|
|
|
params1 = {"n_dim": 3, "const": 1.0} |
120
|
|
|
return [params0, params1] |
121
|
|
|
|
122
|
|
|
@classmethod |
123
|
|
|
def _get_score_params(self): |
124
|
|
|
"""Return settings for testing score/evaluate functions. Used in tests only. |
125
|
|
|
|
126
|
|
|
Returns a list, the i-th element should be valid arguments for |
127
|
|
|
self.evaluate and self.score, of an instance constructed with |
128
|
|
|
self.get_test_params()[i]. |
129
|
|
|
|
130
|
|
|
Returns |
131
|
|
|
------- |
132
|
|
|
list of dict |
133
|
|
|
The parameters to be used for scoring. |
134
|
|
|
""" |
135
|
|
|
score_params0 = {"x0": 0, "x1": 0} |
136
|
|
|
score_params1 = {"x0": 1, "x1": 2, "x2": 3} |
137
|
|
|
return [score_params0, score_params1] |
138
|
|
|
|