| Total Complexity | 1 |
| Total Lines | 36 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | from sklearn.model_selection import cross_val_score |
||
| 2 | from sklearn.ensemble import GradientBoostingClassifier |
||
| 3 | from sklearn.datasets import load_breast_cancer |
||
| 4 | from hyperactive import Hyperactive |
||
| 5 | |||
| 6 | import ray |
||
| 7 | |||
| 8 | data = load_breast_cancer() |
||
| 9 | X, y = data.data, data.target |
||
| 10 | |||
| 11 | |||
| 12 | def gbc_(para, X, y): |
||
| 13 | model = GradientBoostingClassifier( |
||
| 14 | n_estimators=para["n_estimators"], |
||
| 15 | max_depth=para["max_depth"], |
||
| 16 | min_samples_split=para["min_samples_split"], |
||
| 17 | ) |
||
| 18 | scores = cross_val_score(model, X, y) |
||
| 19 | |||
| 20 | return scores.mean() |
||
| 21 | |||
| 22 | |||
| 23 | search_config = { |
||
| 24 | gbc_: { |
||
| 25 | "n_estimators": range(1, 20, 1), |
||
| 26 | "max_depth": range(2, 12), |
||
| 27 | "min_samples_split": range(2, 12), |
||
| 28 | } |
||
| 29 | } |
||
| 30 | |||
| 31 | |||
| 32 | ray.init(num_cpus=4) |
||
| 33 | |||
| 34 | opt = Hyperactive(X, y) |
||
| 35 | opt.search(search_config, n_jobs=4) |
||
| 36 |