Passed
Push — master ( 3f2c9d...310ec2 )
by Simon
01:51
created

hyperactive.main_args.MainArgs.search_args()   A

Complexity

Conditions 3

Size

Total Lines 31
Code Lines 25

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 25
dl 0
loc 31
rs 9.28
c 0
b 0
f 0
cc 3
nop 8

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
6
import random
7
import numpy as np
8
import multiprocessing
9
10
11
class MainArgs:
12
    def __init__(self, X, y, verbosity, random_state, memory):
13
        self.X = X
14
        self.y = y
15
        self.verbosity = verbosity
16
        self.random_state = random_state
17
        self.memory = memory
18
        self.get_search_path = False
19
20
        if verbosity > 9:
21
            self.get_search_path = True
22
23
        if self.verbosity > 2:
24
            self.verbosity = 2
25
26
        self.opt_para = dict()
27
28
    def search_args(
29
        self,
30
        search_config,
31
        max_time,
32
        n_iter,
33
        optimizer,
34
        n_jobs,
35
        warm_start,
36
        scatter_init,
37
    ):
38
        self.search_config = search_config
39
        self.max_time = max_time
40
        self.n_iter = n_iter
41
        self.optimizer = optimizer
42
        self.n_jobs = n_jobs
43
        self.warm_start = warm_start
44
        self.scatter_init = scatter_init
45
46
        self.model_list = list(self.search_config.keys())
47
        self.n_models = len(self.model_list)
48
49
        if self.max_time:
50
            self.max_time = self.max_time * 3600
51
52
        self.set_n_jobs()
53
54
        self._n_process_range = range(0, int(self.n_jobs))
55
56
        if isinstance(optimizer, dict):
57
            self.optimizer = list(optimizer.keys())[0]
58
            self.opt_para = optimizer[self.optimizer]
59
60
    def _set_random_seed(self, thread=0):
61
        """Sets the random seed separately for each thread (to avoid getting the same results in each thread)"""
62
        if self.random_state:
63
            rand = int(self.random_state)
64
        else:
65
            rand = 0
66
67
        random.seed(rand + thread)
68
        np.random.seed(rand + thread)
69
70
    def set_n_jobs(self):
71
        """Sets the number of jobs to run in parallel"""
72
        num_cores = multiprocessing.cpu_count()
73
        if self.n_jobs == -1 or self.n_jobs > num_cores:
74
            self.n_jobs = num_cores
75