Total Complexity | 2 |
Total Lines | 62 |
Duplicated Lines | 61.29 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | |||
6 | import numpy as np |
||
7 | import pandas as pd |
||
8 | |||
9 | from ..candidate import CandidateShortMem |
||
10 | from .search_process_base import SearchProcess |
||
11 | |||
12 | |||
13 | class SearchProcessShortMem(SearchProcess): |
||
14 | View Code Duplication | def __init__( |
|
|
|||
15 | self, |
||
16 | nth_process, |
||
17 | verb, |
||
18 | objective_function, |
||
19 | search_space, |
||
20 | n_iter, |
||
21 | function_parameter, |
||
22 | optimizer, |
||
23 | n_jobs, |
||
24 | init_para, |
||
25 | memory, |
||
26 | hyperactive, |
||
27 | random_state, |
||
28 | ): |
||
29 | super().__init__( |
||
30 | nth_process, |
||
31 | verb, |
||
32 | objective_function, |
||
33 | search_space, |
||
34 | n_iter, |
||
35 | function_parameter, |
||
36 | optimizer, |
||
37 | n_jobs, |
||
38 | init_para, |
||
39 | memory, |
||
40 | hyperactive, |
||
41 | random_state, |
||
42 | ) |
||
43 | |||
44 | self.cand = CandidateShortMem( |
||
45 | self.objective_function, |
||
46 | self.function_parameter, |
||
47 | self.search_space, |
||
48 | self.init_para, |
||
49 | self.memory, |
||
50 | verb, |
||
51 | hyperactive, |
||
52 | ) |
||
53 | |||
54 | def _memory2dataframe(self, memory): |
||
55 | positions = np.array(list(memory.keys())) |
||
56 | scores_list = list(memory.values()) |
||
57 | |||
58 | positions_df = pd.DataFrame(positions, columns=list(self.search_space.keys())) |
||
59 | scores_df = pd.DataFrame(scores_list) |
||
60 | |||
61 | self.position_results = pd.concat([positions_df, scores_df], axis=1) |
||
62 | |||
63 |