1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from sklearn.datasets import load_iris |
8
|
|
|
from sklearn.model_selection import cross_val_score |
9
|
|
|
from sklearn.tree import DecisionTreeClassifier |
10
|
|
|
|
11
|
|
|
from hyperactive import Hyperactive |
12
|
|
|
|
13
|
|
|
data = load_iris() |
14
|
|
|
X, y = data.data, data.target |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def model(para, X, y): |
18
|
|
|
dtc = DecisionTreeClassifier( |
19
|
|
|
max_depth=para["max_depth"], min_samples_split=para["min_samples_split"], |
20
|
|
|
) |
21
|
|
|
scores = cross_val_score(dtc, X, y, cv=2) |
22
|
|
|
|
23
|
|
|
return scores.mean() |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
search_space = { |
27
|
|
|
"max_depth": range(1, 21), |
28
|
|
|
"min_samples_split": range(2, 21), |
29
|
|
|
} |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def _base_test(search, opt_args={}, time=None): |
33
|
|
|
opt = Hyperactive(X, y, **opt_args) |
34
|
|
|
opt.add_search(**search) |
35
|
|
|
opt.run(time) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def test_HillClimbingOptimizer(): |
39
|
|
|
search = { |
40
|
|
|
"model": model, |
41
|
|
|
"function_parameter": {"features": X, "target": y}, |
42
|
|
|
"search_space": search_space, |
43
|
|
|
"n_iter": 15, |
44
|
|
|
"optimizer": "HillClimbing", |
45
|
|
|
} |
46
|
|
|
|
47
|
|
|
_base_test(search) |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def test_StochasticHillClimbingOptimizer(): |
51
|
|
|
search = { |
52
|
|
|
"model": model, |
53
|
|
|
"function_parameter": {"features": X, "target": y}, |
54
|
|
|
"search_space": search_space, |
55
|
|
|
"n_iter": 15, |
56
|
|
|
"optimizer": "StochasticHillClimbing", |
57
|
|
|
} |
58
|
|
|
|
59
|
|
|
_base_test(search) |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def test_TabuOptimizer(): |
63
|
|
|
search = { |
64
|
|
|
"model": model, |
65
|
|
|
"function_parameter": {"features": X, "target": y}, |
66
|
|
|
"search_space": search_space, |
67
|
|
|
"n_iter": 15, |
68
|
|
|
"optimizer": "TabuSearch", |
69
|
|
|
} |
70
|
|
|
|
71
|
|
|
_base_test(search) |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def test_RandomSearchOptimizer(): |
75
|
|
|
search = { |
76
|
|
|
"model": model, |
77
|
|
|
"function_parameter": {"features": X, "target": y}, |
78
|
|
|
"search_space": search_space, |
79
|
|
|
"n_iter": 15, |
80
|
|
|
"optimizer": "RandomSearch", |
81
|
|
|
} |
82
|
|
|
|
83
|
|
|
_base_test(search) |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
def test_RandomRestartHillClimbingOptimizer(): |
87
|
|
|
search = { |
88
|
|
|
"model": model, |
89
|
|
|
"function_parameter": {"features": X, "target": y}, |
90
|
|
|
"search_space": search_space, |
91
|
|
|
"n_iter": 15, |
92
|
|
|
"optimizer": "RandomRestartHillClimbing", |
93
|
|
|
} |
94
|
|
|
|
95
|
|
|
_base_test(search) |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
def test_RandomAnnealingOptimizer(): |
99
|
|
|
search = { |
100
|
|
|
"model": model, |
101
|
|
|
"function_parameter": {"features": X, "target": y}, |
102
|
|
|
"search_space": search_space, |
103
|
|
|
"n_iter": 15, |
104
|
|
|
"optimizer": "RandomAnnealing", |
105
|
|
|
} |
106
|
|
|
|
107
|
|
|
_base_test(search) |
108
|
|
|
|
109
|
|
|
|
110
|
|
|
def test_SimulatedAnnealingOptimizer(): |
111
|
|
|
search = { |
112
|
|
|
"model": model, |
113
|
|
|
"function_parameter": {"features": X, "target": y}, |
114
|
|
|
"search_space": search_space, |
115
|
|
|
"n_iter": 15, |
116
|
|
|
"optimizer": "SimulatedAnnealing", |
117
|
|
|
} |
118
|
|
|
|
119
|
|
|
_base_test(search) |
120
|
|
|
|
121
|
|
|
|
122
|
|
|
def test_StochasticTunnelingOptimizer(): |
123
|
|
|
search = { |
124
|
|
|
"model": model, |
125
|
|
|
"function_parameter": {"features": X, "target": y}, |
126
|
|
|
"search_space": search_space, |
127
|
|
|
"n_iter": 15, |
128
|
|
|
"optimizer": "StochasticTunneling", |
129
|
|
|
} |
130
|
|
|
|
131
|
|
|
_base_test(search) |
132
|
|
|
|
133
|
|
|
|
134
|
|
|
def test_ParallelTemperingOptimizer(): |
135
|
|
|
search = { |
136
|
|
|
"model": model, |
137
|
|
|
"function_parameter": {"features": X, "target": y}, |
138
|
|
|
"search_space": search_space, |
139
|
|
|
"n_iter": 15, |
140
|
|
|
"optimizer": "ParallelTempering", |
141
|
|
|
} |
142
|
|
|
|
143
|
|
|
_base_test(search) |
144
|
|
|
|
145
|
|
|
|
146
|
|
|
def test_ParticleSwarmOptimizer(): |
147
|
|
|
search = { |
148
|
|
|
"model": model, |
149
|
|
|
"function_parameter": {"features": X, "target": y}, |
150
|
|
|
"search_space": search_space, |
151
|
|
|
"n_iter": 15, |
152
|
|
|
"optimizer": "ParticleSwarm", |
153
|
|
|
} |
154
|
|
|
|
155
|
|
|
_base_test(search) |
156
|
|
|
|
157
|
|
|
|
158
|
|
|
def test_EvolutionStrategyOptimizer(): |
159
|
|
|
search = { |
160
|
|
|
"model": model, |
161
|
|
|
"function_parameter": {"features": X, "target": y}, |
162
|
|
|
"search_space": search_space, |
163
|
|
|
"n_iter": 15, |
164
|
|
|
"optimizer": "EvolutionStrategy", |
165
|
|
|
} |
166
|
|
|
|
167
|
|
|
_base_test(search) |
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def test_BayesianOptimizer(): |
171
|
|
|
search = { |
172
|
|
|
"model": model, |
173
|
|
|
"function_parameter": {"features": X, "target": y}, |
174
|
|
|
"search_space": search_space, |
175
|
|
|
"n_iter": 15, |
176
|
|
|
"optimizer": "Bayesian", |
177
|
|
|
} |
178
|
|
|
|
179
|
|
|
_base_test(search) |
180
|
|
|
|
181
|
|
|
|
182
|
|
|
def test_TPE(): |
183
|
|
|
search = { |
184
|
|
|
"model": model, |
185
|
|
|
"function_parameter": {"features": X, "target": y}, |
186
|
|
|
"search_space": search_space, |
187
|
|
|
"n_iter": 15, |
188
|
|
|
"optimizer": "TPE", |
189
|
|
|
} |
190
|
|
|
|
191
|
|
|
_base_test(search) |
192
|
|
|
|
193
|
|
|
|
194
|
|
|
def test_DecisionTreeOptimizer(): |
195
|
|
|
search = { |
196
|
|
|
"model": model, |
197
|
|
|
"function_parameter": {"features": X, "target": y}, |
198
|
|
|
"search_space": search_space, |
199
|
|
|
"n_iter": 15, |
200
|
|
|
"optimizer": "DecisionTree", |
201
|
|
|
} |
202
|
|
|
|
203
|
|
|
_base_test(search) |
204
|
|
|
|