1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
import random |
7
|
|
|
import numpy as np |
8
|
|
|
import pandas as pd |
9
|
|
|
|
10
|
|
|
from importlib import import_module |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
optimizer_dict = { |
14
|
|
|
"HillClimbing": "HillClimbingOptimizer", |
15
|
|
|
"StochasticHillClimbing": "StochasticHillClimbingOptimizer", |
16
|
|
|
"TabuSearch": "TabuOptimizer", |
17
|
|
|
"RandomSearch": "RandomSearchOptimizer", |
18
|
|
|
"RandomRestartHillClimbing": "RandomRestartHillClimbingOptimizer", |
19
|
|
|
"RandomAnnealing": "RandomAnnealingOptimizer", |
20
|
|
|
"SimulatedAnnealing": "SimulatedAnnealingOptimizer", |
21
|
|
|
"StochasticTunneling": "StochasticTunnelingOptimizer", |
22
|
|
|
"ParallelTempering": "ParallelTemperingOptimizer", |
23
|
|
|
"ParticleSwarm": "ParticleSwarmOptimizer", |
24
|
|
|
"EvolutionStrategy": "EvolutionStrategyOptimizer", |
25
|
|
|
"Bayesian": "BayesianOptimizer", |
26
|
|
|
"TPE": "TreeStructuredParzenEstimators", |
27
|
|
|
"DecisionTree": "DecisionTreeOptimizer", |
28
|
|
|
} |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class SearchProcess: |
32
|
|
|
def __init__( |
33
|
|
|
self, |
34
|
|
|
nth_process, |
35
|
|
|
verb, |
36
|
|
|
objective_function, |
37
|
|
|
search_space, |
38
|
|
|
n_iter, |
39
|
|
|
function_parameter, |
40
|
|
|
optimizer, |
41
|
|
|
n_jobs, |
42
|
|
|
init_para, |
43
|
|
|
memory, |
44
|
|
|
hyperactive, |
45
|
|
|
random_state, |
46
|
|
|
): |
47
|
|
|
self.nth_process = nth_process |
48
|
|
|
self.verb = verb |
49
|
|
|
self.objective_function = objective_function |
50
|
|
|
self.search_space = search_space |
51
|
|
|
self.n_iter = n_iter |
52
|
|
|
self.function_parameter = function_parameter |
53
|
|
|
self.optimizer = optimizer |
54
|
|
|
self.n_jobs = n_jobs |
55
|
|
|
self.init_para = init_para |
56
|
|
|
self.memory = memory |
57
|
|
|
self.hyperactive = hyperactive |
58
|
|
|
self.random_state = random_state |
59
|
|
|
|
60
|
|
|
self._process_arguments() |
61
|
|
|
|
62
|
|
|
self.iter_times = [] |
63
|
|
|
self.eval_times = [] |
64
|
|
|
|
65
|
|
|
module = import_module("gradient_free_optimizers") |
66
|
|
|
self.opt_class = getattr(module, optimizer_dict[optimizer]) |
67
|
|
|
|
68
|
|
|
self.res = ResultsManager(objective_function, search_space, function_parameter) |
69
|
|
|
|
70
|
|
|
def _results_dict(self): |
71
|
|
|
results_dict = { |
72
|
|
|
"eval_times": self.eval_times, |
73
|
|
|
"iter_times": self.iter_times, |
74
|
|
|
"memory": self.cand.memory_dict_new, |
75
|
|
|
"para_best": self.cand.para_best, |
76
|
|
|
"score_best": self.cand.score_best, |
77
|
|
|
} |
78
|
|
|
|
79
|
|
|
return results_dict |
80
|
|
|
|
81
|
|
|
def _time_exceeded(self, start_time, max_time): |
82
|
|
|
run_time = time.time() - start_time |
83
|
|
|
return max_time and run_time > max_time |
84
|
|
|
|
85
|
|
|
def _initialize_search(self, nth_process): |
86
|
|
|
init_positions = self.cand.init.set_start_pos(self.n_positions) |
87
|
|
|
self.opt = self.opt_class(init_positions, self.cand.space.dim, opt_para={}) |
88
|
|
|
|
89
|
|
|
self.verb.p_bar.init_p_bar(nth_process, self.n_iter, self.objective_function) |
90
|
|
|
|
91
|
|
|
def _process_arguments(self): |
92
|
|
|
self._set_random_seed() |
93
|
|
|
|
94
|
|
|
if isinstance(self.optimizer, dict): |
95
|
|
|
optimizer = list(self.optimizer.keys())[0] |
96
|
|
|
self.opt_para = self.optimizer[optimizer] |
97
|
|
|
self.optimizer = optimizer |
98
|
|
|
|
99
|
|
|
self.n_positions = self._get_n_positions() |
100
|
|
|
else: |
101
|
|
|
self.opt_para = {} |
102
|
|
|
self.n_positions = self._get_n_positions() |
103
|
|
|
|
104
|
|
|
def _get_n_positions(self): |
105
|
|
|
n_positions_strings = [ |
106
|
|
|
"n_positions", |
107
|
|
|
"system_temperatures", |
108
|
|
|
"n_particles", |
109
|
|
|
"individuals", |
110
|
|
|
] |
111
|
|
|
|
112
|
|
|
n_positions = 1 |
113
|
|
|
for n_pos_name in n_positions_strings: |
114
|
|
|
if n_pos_name in list(self.opt_para.keys()): |
115
|
|
|
n_positions = self.opt_para[n_pos_name] |
116
|
|
|
if n_positions == "system_temperatures": |
117
|
|
|
n_positions = len(n_positions) |
118
|
|
|
|
119
|
|
|
return n_positions |
120
|
|
|
|
121
|
|
|
def _set_random_seed(self): |
122
|
|
|
"""Sets the random seed separately for each thread (to avoid getting the same results in each thread)""" |
123
|
|
|
if self.random_state is None: |
124
|
|
|
self.random_state = np.random.randint(0, high=2 ** 32 - 2) |
125
|
|
|
|
126
|
|
|
random.seed(self.random_state + self.nth_process) |
127
|
|
|
np.random.seed(self.random_state + self.nth_process) |
128
|
|
|
|
129
|
|
|
def store_memory(self, memory): |
130
|
|
|
pass |
131
|
|
|
|
132
|
|
|
def print_best_para(self): |
133
|
|
|
self.verb.info.print_start_point() |
134
|
|
|
|
135
|
|
|
def search(self, start_time, max_time, nth_process): |
136
|
|
|
start_time_search = time.time() |
137
|
|
|
self._initialize_search(nth_process) |
138
|
|
|
|
139
|
|
|
# loop to initialize N positions |
140
|
|
|
for nth_init in range(len(self.opt.init_positions)): |
141
|
|
|
start_time_iter = time.time() |
142
|
|
|
pos_new = self.opt.init_pos(nth_init) |
143
|
|
|
|
144
|
|
|
start_time_eval = time.time() |
145
|
|
|
score_new = self.cand.get_score(pos_new, nth_init) |
146
|
|
|
self.eval_times.append(time.time() - start_time_eval) |
147
|
|
|
|
148
|
|
|
self.opt.evaluate(score_new) |
149
|
|
|
self.iter_times.append(time.time() - start_time_iter) |
150
|
|
|
|
151
|
|
|
# loop to do the iterations |
152
|
|
|
for nth_iter in range(len(self.opt.init_positions), self.n_iter): |
153
|
|
|
start_time_iter = time.time() |
154
|
|
|
pos_new = self.opt.iterate(nth_iter) |
155
|
|
|
|
156
|
|
|
start_time_eval = time.time() |
157
|
|
|
score_new = self.cand.get_score(pos_new, nth_iter) |
158
|
|
|
self.eval_times.append(time.time() - start_time_eval) |
159
|
|
|
|
160
|
|
|
self.opt.evaluate(score_new) |
161
|
|
|
self.iter_times.append(time.time() - start_time_search) |
162
|
|
|
|
163
|
|
|
if self._time_exceeded(start_time, max_time): |
164
|
|
|
break |
165
|
|
|
|
166
|
|
|
self.verb.p_bar.close_p_bar() |
167
|
|
|
|
168
|
|
|
self.res.memory_dict_new = self.cand.memory_dict_new |
169
|
|
|
self.res.results_dict = self._results_dict() |
170
|
|
|
|
171
|
|
|
return self.res |
172
|
|
|
|
173
|
|
|
|
174
|
|
|
from optimization_metadata import HyperactiveWrapper |
175
|
|
|
from ..meta_data.meta_data_path import meta_data_path |
176
|
|
|
|
177
|
|
|
|
178
|
|
|
class ResultsManager: |
179
|
|
|
def __init__( |
180
|
|
|
self, objective_function, search_space, function_parameter, |
181
|
|
|
): |
182
|
|
|
self.objective_function = objective_function |
183
|
|
|
self.search_space = search_space |
184
|
|
|
self.function_parameter = function_parameter |
185
|
|
|
|
186
|
|
|
self.memory_dict_new = {} |
187
|
|
|
|
188
|
|
|
self.hypermem = HyperactiveWrapper( |
189
|
|
|
main_path=meta_data_path(), |
190
|
|
|
X=function_parameter["features"], |
191
|
|
|
y=function_parameter["target"], |
192
|
|
|
model=self.objective_function, |
193
|
|
|
search_space=search_space, |
194
|
|
|
) |
195
|
|
|
|
196
|
|
|
def load_long_term_memory(self): |
197
|
|
|
return self.hypermem.load() |
198
|
|
|
|
199
|
|
|
def save_long_term_memory(self): |
200
|
|
|
self.hypermem.save(self.memory_dict_new) |
201
|
|
|
|