Total Complexity | 1 |
Total Lines | 39 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | |||
3 | from hyperactive import Hyperactive |
||
4 | |||
5 | |||
6 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
7 | from hyperactive.optimizers import ( |
||
8 | HillClimbingOptimizer, |
||
9 | RandomSearchOptimizer, |
||
10 | BayesianOptimizer, |
||
11 | ) |
||
12 | |||
13 | |||
14 | opt_strat = CustomOptimizationStrategy() |
||
15 | opt_strat.add_optimizer(RandomSearchOptimizer(), duration=0.5) |
||
16 | opt_strat.prune_search_space() |
||
17 | opt_strat.add_optimizer(HillClimbingOptimizer(), duration=0.5) |
||
18 | |||
19 | |||
20 | def objective_function(opt): |
||
21 | score = -opt["x1"] * opt["x1"] |
||
22 | return score, {"additional stuff": 1} |
||
23 | |||
24 | |||
25 | search_space = {"x1": list(np.arange(-100, 101, 1))} |
||
26 | n_iter = 100 |
||
27 | optimizer = opt_strat |
||
28 | |||
29 | hyper = Hyperactive() |
||
30 | hyper.add_search( |
||
31 | objective_function, |
||
32 | search_space, |
||
33 | n_iter=n_iter, |
||
34 | n_jobs=1, |
||
35 | optimizer=optimizer, |
||
36 | # random_state=1, |
||
37 | ) |
||
38 | hyper.run() |
||
39 |