1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from sklearn.utils.metaestimators import available_if |
7
|
|
|
from sklearn.utils.deprecation import _deprecate_Xt_in_inverse_transform |
8
|
|
|
from sklearn.exceptions import NotFittedError |
9
|
|
|
from sklearn.utils.validation import check_is_fitted |
10
|
|
|
|
11
|
|
|
from .utils import _estimator_has |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
# NOTE Implementations of following methods from: |
15
|
|
|
# https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/model_selection/_search.py |
16
|
|
|
# Tag: 1.5.1 |
17
|
|
|
class BestEstimator: |
18
|
|
|
|
19
|
|
|
@available_if(_estimator_has("score_samples")) |
20
|
|
|
def score_samples(self, X): |
21
|
|
|
check_is_fitted(self) |
22
|
|
|
return self.best_estimator_.score_samples(X) |
23
|
|
|
|
24
|
|
|
@available_if(_estimator_has("predict")) |
25
|
|
|
def predict(self, X): |
26
|
|
|
check_is_fitted(self) |
27
|
|
|
return self.best_estimator_.predict(X) |
28
|
|
|
|
29
|
|
|
@available_if(_estimator_has("predict_proba")) |
30
|
|
|
def predict_proba(self, X): |
31
|
|
|
check_is_fitted(self) |
32
|
|
|
return self.best_estimator_.predict_proba(X) |
33
|
|
|
|
34
|
|
|
@available_if(_estimator_has("predict_log_proba")) |
35
|
|
|
def predict_log_proba(self, X): |
36
|
|
|
check_is_fitted(self) |
37
|
|
|
return self.best_estimator_.predict_log_proba(X) |
38
|
|
|
|
39
|
|
|
@available_if(_estimator_has("decision_function")) |
40
|
|
|
def decision_function(self, X): |
41
|
|
|
check_is_fitted(self) |
42
|
|
|
return self.best_estimator_.decision_function(X) |
43
|
|
|
|
44
|
|
|
@available_if(_estimator_has("transform")) |
45
|
|
|
def transform(self, X): |
46
|
|
|
check_is_fitted(self) |
47
|
|
|
return self.best_estimator_.transform(X) |
48
|
|
|
|
49
|
|
|
@available_if(_estimator_has("inverse_transform")) |
50
|
|
|
def inverse_transform(self, X=None, Xt=None): |
51
|
|
|
X = _deprecate_Xt_in_inverse_transform(X, Xt) |
52
|
|
|
check_is_fitted(self) |
53
|
|
|
return self.best_estimator_.inverse_transform(X) |
54
|
|
|
|
55
|
|
|
@property |
56
|
|
|
def n_features_in_(self): |
57
|
|
|
try: |
58
|
|
|
check_is_fitted(self) |
59
|
|
|
except NotFittedError as nfe: |
60
|
|
|
raise AttributeError( |
61
|
|
|
"{} object has no n_features_in_ attribute.".format( |
62
|
|
|
self.__class__.__name__ |
63
|
|
|
) |
64
|
|
|
) from nfe |
65
|
|
|
|
66
|
|
|
return self.best_estimator_.n_features_in_ |
67
|
|
|
|
68
|
|
|
@property |
69
|
|
|
def classes_(self): |
70
|
|
|
_estimator_has("classes_")(self) |
71
|
|
|
return self.best_estimator_.classes_ |
72
|
|
|
|