| Total Complexity | 2 |
| Total Lines | 56 |
| Duplicated Lines | 58.93 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | import pytest |
||
| 2 | import numpy as np |
||
| 3 | |||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
| 7 | from hyperactive.optimizers import HillClimbingOptimizer |
||
| 8 | |||
| 9 | from ._parametrize import optimizers |
||
| 10 | |||
| 11 | |||
| 12 | def objective_function(opt): |
||
| 13 | score = -(opt["x1"] * opt["x1"] + opt["x2"] * opt["x2"]) |
||
| 14 | return score |
||
| 15 | |||
| 16 | |||
| 17 | search_space = { |
||
| 18 | "x1": list(np.arange(-3, 3, 1)), |
||
| 19 | "x2": list(np.arange(-3, 3, 1)), |
||
| 20 | } |
||
| 21 | |||
| 22 | |||
| 23 | View Code Duplication | @pytest.mark.parametrize(*optimizers) |
|
|
|
|||
| 24 | def test_strategy_combinations_0(Optimizer): |
||
| 25 | optimizer1 = Optimizer() |
||
| 26 | optimizer2 = HillClimbingOptimizer() |
||
| 27 | |||
| 28 | opt_strat = CustomOptimizationStrategy() |
||
| 29 | opt_strat.add_optimizer(optimizer1, duration=0.5) |
||
| 30 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
||
| 31 | |||
| 32 | n_iter = 4 |
||
| 33 | |||
| 34 | hyper = Hyperactive() |
||
| 35 | hyper.add_search( |
||
| 36 | objective_function, |
||
| 37 | search_space, |
||
| 38 | optimizer=opt_strat, |
||
| 39 | n_iter=n_iter, |
||
| 40 | memory=False, |
||
| 41 | initialize={"random": 1}, |
||
| 42 | ) |
||
| 43 | hyper.run() |
||
| 44 | |||
| 45 | search_data = hyper.search_data(objective_function) |
||
| 46 | |||
| 47 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
| 48 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
| 49 | |||
| 50 | assert len(search_data) == n_iter |
||
| 51 | |||
| 52 | assert len(optimizer1.search_data) == 2 |
||
| 53 | assert len(optimizer2.search_data) == 2 |
||
| 54 | |||
| 55 | assert optimizer1.best_score <= optimizer2.best_score |
||
| 56 |