1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
|
4
|
|
|
from hyperactive import Hyperactive |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def test_issue_25(): |
8
|
|
|
# set a path to save the dataframe |
9
|
|
|
path = "./search_data.csv" |
10
|
|
|
search_space = { |
11
|
|
|
"n_neighbors": list(range(1, 50)), |
12
|
|
|
} |
13
|
|
|
|
14
|
|
|
# get para names from search space + the score |
15
|
|
|
para_names = list(search_space.keys()) + ["score"] |
16
|
|
|
|
17
|
|
|
# init empty pandas dataframe |
18
|
|
|
search_data = pd.DataFrame(columns=para_names) |
19
|
|
|
search_data.to_csv(path, index=False) |
20
|
|
|
|
21
|
|
|
def objective_function(para): |
22
|
|
|
# score = random.choice([1.2, 2.3, np.nan]) |
23
|
|
|
score = np.nan |
24
|
|
|
|
25
|
|
|
# you can access the entire dictionary from "para" |
26
|
|
|
parameter_dict = para.para_dict |
27
|
|
|
|
28
|
|
|
# save the score in the copy of the dictionary |
29
|
|
|
parameter_dict["score"] = score |
30
|
|
|
|
31
|
|
|
# append parameter dictionary to pandas dataframe |
32
|
|
|
search_data = pd.read_csv(path, na_values="nan") |
33
|
|
|
search_data_new = pd.DataFrame( |
34
|
|
|
parameter_dict, columns=para_names, index=[0] |
35
|
|
|
) |
36
|
|
|
|
37
|
|
|
# search_data = search_data.append(search_data_new) |
38
|
|
|
search_data = pd.concat( |
39
|
|
|
[search_data, search_data_new], ignore_index=True |
40
|
|
|
) |
41
|
|
|
|
42
|
|
|
search_data.to_csv(path, index=False, na_rep="nan") |
43
|
|
|
|
44
|
|
|
return score |
45
|
|
|
|
46
|
|
|
hyper0 = Hyperactive() |
47
|
|
|
hyper0.add_search(objective_function, search_space, n_iter=50) |
48
|
|
|
hyper0.run() |
49
|
|
|
|
50
|
|
|
search_data_0 = pd.read_csv(path, na_values="nan") |
51
|
|
|
""" |
52
|
|
|
the second run should be much faster than before, |
53
|
|
|
because Hyperactive already knows most parameters/scores |
54
|
|
|
""" |
55
|
|
|
hyper1 = Hyperactive() |
56
|
|
|
hyper1.add_search( |
57
|
|
|
objective_function, |
58
|
|
|
search_space, |
59
|
|
|
n_iter=50, |
60
|
|
|
memory_warm_start=search_data_0, |
61
|
|
|
) |
62
|
|
|
hyper1.run() |
63
|
|
|
|