1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
from ...base_optimizer import BaseOptimizer |
10
|
|
|
from ...base_positioner import BasePositioner |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def _split_into_subcubes(data, split_per_dim=2): |
14
|
|
|
n_dim = data.shape[1] |
15
|
|
|
subcubes = [] |
16
|
|
|
|
17
|
|
|
data_list = [data] |
18
|
|
|
|
19
|
|
|
for dim in range(n_dim): |
20
|
|
|
print("\n") |
21
|
|
|
subdata_list = [] |
22
|
|
|
|
23
|
|
|
if dim == 0: |
24
|
|
|
data_list = [data] |
25
|
|
|
|
26
|
|
|
for data in data_list: |
27
|
|
|
print("data", data.shape) |
28
|
|
|
data_sorted = data[data[:, dim].argsort()] |
29
|
|
|
|
30
|
|
|
subdata = np.array_split(data_sorted, 2, axis=0) |
31
|
|
|
|
32
|
|
|
subdata_list = subdata_list + subdata |
33
|
|
|
|
34
|
|
|
data_list = subdata_list |
35
|
|
|
|
36
|
|
|
print("subdata_list", len(subdata_list)) |
37
|
|
|
|
38
|
|
|
return subcubes |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
class SBOM(BaseOptimizer): |
42
|
|
|
def __init__(self, _opt_args_): |
43
|
|
|
super().__init__(_opt_args_) |
44
|
|
|
self.n_positioners = 1 |
45
|
|
|
|
46
|
|
|
def get_random_sample(self): |
47
|
|
|
sample_size = self._sample_size() |
48
|
|
|
if sample_size > self.all_pos_comb.shape[0]: |
49
|
|
|
sample_size = self.all_pos_comb.shape[0] |
50
|
|
|
|
51
|
|
|
row_sample = np.random.choice( |
52
|
|
|
self.all_pos_comb.shape[0], size=(sample_size,), replace=False |
53
|
|
|
) |
54
|
|
|
return self.all_pos_comb[row_sample] |
55
|
|
|
|
56
|
|
|
def _sample_size(self): |
57
|
|
|
n = self._opt_args_.max_sample_size |
58
|
|
|
return int(n * np.tanh(self.all_pos_comb.size / n)) |
59
|
|
|
|
60
|
|
|
def _all_possible_pos(self, cand): |
61
|
|
|
pos_space = [] |
62
|
|
|
for dim_ in cand._space_.dim: |
63
|
|
|
pos_space.append(np.arange(dim_ + 1)) |
64
|
|
|
|
65
|
|
|
self.n_dim = len(pos_space) |
66
|
|
|
self.all_pos_comb = np.array(np.meshgrid(*pos_space)).T.reshape(-1, self.n_dim) |
67
|
|
|
|
68
|
|
|
print("\n\nself.all_pos_comb", self.all_pos_comb.shape, "\n") |
69
|
|
|
|
70
|
|
|
_split_into_subcubes(self.all_pos_comb) |
71
|
|
|
|
72
|
|
|
def _init_iteration(self, _cand_): |
73
|
|
|
p = SbomPositioner(self._opt_args_) |
74
|
|
|
p.move_random(_cand_) |
75
|
|
|
|
76
|
|
|
self._optimizer_eval(_cand_, p) |
77
|
|
|
self._update_pos(_cand_, p) |
78
|
|
|
|
79
|
|
|
self._all_possible_pos(_cand_) |
80
|
|
|
|
81
|
|
|
if self._opt_args_.warm_start_smbo: |
82
|
|
|
self.X_sample = _cand_.mem._get_para() |
83
|
|
|
self.Y_sample = _cand_.mem._get_score() |
84
|
|
|
else: |
85
|
|
|
self.X_sample = _cand_.pos_best.reshape(1, -1) |
86
|
|
|
self.Y_sample = np.array(_cand_.score_best).reshape(1, -1) |
87
|
|
|
|
88
|
|
|
return p |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
class SbomPositioner(BasePositioner): |
92
|
|
|
def __init__(self, _opt_args_): |
93
|
|
|
super().__init__(_opt_args_) |
94
|
|
|
|