Total Complexity | 3 |
Total Lines | 34 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import time |
||
2 | import numpy as np |
||
3 | from hyperactive import Hyperactive |
||
4 | |||
5 | |||
6 | def objective_function(para): |
||
7 | score = -para["x1"] * para["x1"] |
||
8 | return score |
||
9 | |||
10 | |||
11 | search_space = { |
||
12 | "x1": list(np.arange(0, 100000, 1)), |
||
13 | } |
||
14 | |||
15 | |||
16 | def test_max_time_0(): |
||
17 | c_time1 = time.perf_counter() |
||
18 | hyper = Hyperactive() |
||
19 | hyper.add_search(objective_function, search_space, n_iter=1000000) |
||
20 | hyper.run(max_time=0.1) |
||
21 | diff_time1 = time.perf_counter() - c_time1 |
||
22 | |||
23 | assert diff_time1 < 1 |
||
24 | |||
25 | |||
26 | def test_max_time_1(): |
||
27 | c_time1 = time.perf_counter() |
||
28 | hyper = Hyperactive() |
||
29 | hyper.add_search(objective_function, search_space, n_iter=1000000) |
||
30 | hyper.run(max_time=1) |
||
31 | diff_time1 = time.perf_counter() - c_time1 |
||
32 | |||
33 | assert 0.3 < diff_time1 < 2 |
||
34 |