1
|
|
|
# disables sklearn warnings |
2
|
|
|
def warn(*args, **kwargs): |
3
|
|
|
pass |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import warnings |
7
|
|
|
|
8
|
|
|
warnings.warn = warn |
9
|
|
|
|
10
|
|
|
import itertools |
11
|
|
|
|
12
|
|
|
from sklearn.datasets import load_breast_cancer |
13
|
|
|
from sklearn.model_selection import cross_val_score |
14
|
|
|
from mlxtend.classifier import StackingClassifier |
15
|
|
|
|
16
|
|
|
from sklearn.ensemble import ( |
17
|
|
|
GradientBoostingClassifier, |
18
|
|
|
RandomForestClassifier, |
19
|
|
|
ExtraTreesClassifier, |
20
|
|
|
) |
21
|
|
|
|
22
|
|
|
from sklearn.neighbors import KNeighborsClassifier |
23
|
|
|
from sklearn.neural_network import MLPClassifier |
24
|
|
|
from sklearn.gaussian_process import GaussianProcessClassifier |
25
|
|
|
from sklearn.tree import DecisionTreeClassifier |
26
|
|
|
from sklearn.naive_bayes import GaussianNB |
27
|
|
|
|
28
|
|
|
from sklearn.linear_model import LogisticRegression |
29
|
|
|
from sklearn.linear_model.ridge import RidgeClassifier |
30
|
|
|
|
31
|
|
|
from hyperactive import Hyperactive |
32
|
|
|
|
33
|
|
|
data = load_breast_cancer() |
34
|
|
|
X, y = data.data, data.target |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
gbc = GradientBoostingClassifier() |
38
|
|
|
rfc = RandomForestClassifier() |
39
|
|
|
etc = ExtraTreesClassifier() |
40
|
|
|
|
41
|
|
|
mlp = MLPClassifier() |
42
|
|
|
gnb = GaussianNB() |
43
|
|
|
gpc = GaussianProcessClassifier() |
44
|
|
|
dtc = DecisionTreeClassifier() |
45
|
|
|
knn = KNeighborsClassifier() |
46
|
|
|
|
47
|
|
|
lr = LogisticRegression() |
48
|
|
|
rc = RidgeClassifier() |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def stacking(para, X, y): |
52
|
|
|
stack_lvl_0 = StackingClassifier( |
53
|
|
|
classifiers=para["lvl_0"], meta_classifier=para["top"] |
54
|
|
|
) |
55
|
|
|
stack_lvl_1 = StackingClassifier( |
56
|
|
|
classifiers=para["lvl_1"], meta_classifier=stack_lvl_0 |
57
|
|
|
) |
58
|
|
|
scores = cross_val_score(stack_lvl_1, X, y, cv=3) |
59
|
|
|
|
60
|
|
|
return scores.mean() |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
def get_combinations(models): |
64
|
|
|
comb = [] |
65
|
|
|
for i in range(0, len(models) + 1): |
66
|
|
|
for subset in itertools.permutations(models, i): |
67
|
|
|
if len(subset) == 0: |
68
|
|
|
continue |
69
|
|
|
comb.append(list(subset)) |
70
|
|
|
return comb |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
top = [lr, dtc, gnb, rc] |
74
|
|
|
models_0 = [gpc, dtc, mlp, gnb, knn] |
75
|
|
|
models_1 = [gbc, rfc, etc] |
76
|
|
|
|
77
|
|
|
stack_lvl_0_clfs = get_combinations(models_0) |
78
|
|
|
stack_lvl_1_clfs = get_combinations(models_1) |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
search_config = { |
82
|
|
|
stacking: {"lvl_1": stack_lvl_1_clfs, "lvl_0": stack_lvl_0_clfs, "top": top} |
83
|
|
|
} |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
opt = Hyperactive(search_config, n_jobs=2, n_iter=150) |
87
|
|
|
opt.search(X, y) |
88
|
|
|
|