|
1
|
|
|
""" |
|
2
|
|
|
Internal helpers that bridge behavioural differences between |
|
3
|
|
|
scikit-learn versions. Import *private* scikit-learn symbols **only** |
|
4
|
|
|
here and nowhere else. |
|
5
|
|
|
|
|
6
|
|
|
Copyright: Hyperactive contributors |
|
7
|
|
|
License: MIT |
|
8
|
|
|
""" |
|
9
|
|
|
|
|
10
|
|
|
from __future__ import annotations |
|
11
|
|
|
|
|
12
|
|
|
import warnings |
|
13
|
|
|
from typing import Dict, Any |
|
14
|
|
|
|
|
15
|
|
|
import sklearn |
|
16
|
|
|
from packaging import version |
|
17
|
|
|
from sklearn.utils.validation import indexable |
|
18
|
|
|
|
|
19
|
|
|
_SK_VERSION = version.parse(sklearn.__version__) |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
def _safe_validate_X_y(estimator, X, y): |
|
23
|
|
|
""" |
|
24
|
|
|
Version-independent replacement for naive validate_data(X, y). |
|
25
|
|
|
|
|
26
|
|
|
• Ensures X is 2-D. |
|
27
|
|
|
• Allows y to stay 1-D (required by scikit-learn >=1.7 checks). |
|
28
|
|
|
• Uses BaseEstimator._validate_data when available so that |
|
29
|
|
|
estimator tags and sample-weight checks keep working. |
|
30
|
|
|
""" |
|
31
|
|
|
X, y = indexable(X, y) |
|
32
|
|
|
|
|
33
|
|
|
if hasattr(estimator, "_validate_data"): |
|
34
|
|
|
return estimator._validate_data( |
|
35
|
|
|
X, |
|
36
|
|
|
y, |
|
37
|
|
|
validate_separately=( |
|
38
|
|
|
{"ensure_2d": True}, # parameters for X |
|
39
|
|
|
{"ensure_2d": False}, # parameters for y |
|
40
|
|
|
), |
|
41
|
|
|
) |
|
42
|
|
|
|
|
43
|
|
|
# Fallback for very old scikit-learn versions (<0.23) |
|
44
|
|
|
from sklearn.utils.validation import check_X_y |
|
45
|
|
|
|
|
46
|
|
|
return check_X_y(X, y, ensure_2d=True) |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
def _safe_refit(estimator, X, y, fit_params): |
|
50
|
|
|
if estimator.refit: |
|
51
|
|
|
estimator._refit(X, y, **fit_params) |
|
52
|
|
|
|
|
53
|
|
|
# make the wrapper itself expose n_features_in_ |
|
54
|
|
|
if hasattr(estimator.best_estimator_, "n_features_in_"): |
|
55
|
|
|
estimator.n_features_in_ = estimator.best_estimator_.n_features_in_ |
|
56
|
|
|
else: |
|
57
|
|
|
# Even when `refit=False` we must satisfy the contract |
|
58
|
|
|
estimator.n_features_in_ = X.shape[1] |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
# Replacement for `_deprecate_Xt_in_inverse_transform` |
|
62
|
|
|
if _SK_VERSION < version.parse("1.7"): |
|
63
|
|
|
# Still exists → re-export |
|
64
|
|
|
from sklearn.utils.deprecation import _deprecate_Xt_in_inverse_transform |
|
65
|
|
|
else: |
|
66
|
|
|
# Removed in 1.7 → provide drop-in replacement |
|
67
|
|
|
def _deprecate_Xt_in_inverse_transform( # noqa: N802 keep sklearn’s name |
|
68
|
|
|
X: Any | None, |
|
69
|
|
|
Xt: Any | None, |
|
70
|
|
|
): |
|
71
|
|
|
""" |
|
72
|
|
|
scikit-learn ≤1.6 accepted both the old `Xt` parameter and the new |
|
73
|
|
|
`X` parameter for `inverse_transform`. When only `Xt` is given we |
|
74
|
|
|
return `Xt` and raise a deprecation warning (same behaviour that |
|
75
|
|
|
scikit-learn had before 1.7); otherwise we return `X`. |
|
76
|
|
|
""" |
|
77
|
|
|
if Xt is not None: |
|
78
|
|
|
warnings.warn( |
|
79
|
|
|
"'Xt' was deprecated in scikit-learn 1.2 and has been " |
|
80
|
|
|
"removed in 1.7; use the positional argument 'X' instead.", |
|
81
|
|
|
FutureWarning, |
|
82
|
|
|
stacklevel=2, |
|
83
|
|
|
) |
|
84
|
|
|
return Xt |
|
85
|
|
|
return X |
|
86
|
|
|
|
|
87
|
|
|
|
|
88
|
|
|
# Replacement for `_check_method_params` |
|
89
|
|
|
try: |
|
90
|
|
|
from sklearn.utils.validation import _check_method_params # noqa: F401 |
|
91
|
|
|
except ImportError: # fallback for future releases |
|
92
|
|
|
|
|
93
|
|
|
def _check_method_params( # type: ignore[override] # noqa: N802 |
|
94
|
|
|
X, |
|
95
|
|
|
params: Dict[str, Any], |
|
96
|
|
|
): |
|
97
|
|
|
# passthrough – rely on estimator & indexable for validation |
|
98
|
|
|
return params |
|
99
|
|
|
|
|
100
|
|
|
|
|
101
|
|
|
__all__ = [ |
|
102
|
|
|
"_deprecate_Xt_in_inverse_transform", |
|
103
|
|
|
"_check_method_params", |
|
104
|
|
|
] |
|
105
|
|
|
|