1
|
|
|
""" |
2
|
|
|
Internal helpers that bridge behavioural differences between |
3
|
|
|
scikit-learn versions. Import *private* scikit-learn symbols **only** |
4
|
|
|
here and nowhere else. |
5
|
|
|
|
6
|
|
|
Copyright: Hyperactive contributors |
7
|
|
|
License: MIT |
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from __future__ import annotations |
11
|
|
|
|
12
|
|
|
import warnings |
13
|
|
|
from typing import Dict, Any |
14
|
|
|
|
15
|
|
|
import sklearn |
16
|
|
|
from packaging import version |
17
|
|
|
from sklearn.utils.validation import indexable |
18
|
|
|
|
19
|
|
|
_SK_VERSION = version.parse(sklearn.__version__) |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
def _safe_validate_X_y(estimator, X, y): |
23
|
|
|
""" |
24
|
|
|
Version-independent replacement for naive validate_data(X, y). |
25
|
|
|
|
26
|
|
|
• Ensures X is 2-D. |
27
|
|
|
• Allows y to stay 1-D (required by scikit-learn >=1.7 checks). |
28
|
|
|
• Uses BaseEstimator._validate_data when available so that |
29
|
|
|
estimator tags and sample-weight checks keep working. |
30
|
|
|
""" |
31
|
|
|
X, y = indexable(X, y) |
32
|
|
|
|
33
|
|
|
if hasattr(estimator, "_validate_data"): |
34
|
|
|
return estimator._validate_data( |
35
|
|
|
X, |
36
|
|
|
y, |
37
|
|
|
validate_separately=( |
38
|
|
|
{"ensure_2d": True}, # parameters for X |
39
|
|
|
{"ensure_2d": False}, # parameters for y |
40
|
|
|
), |
41
|
|
|
) |
42
|
|
|
|
43
|
|
|
# Fallback for very old scikit-learn versions (<0.23) |
44
|
|
|
from sklearn.utils.validation import check_X_y |
45
|
|
|
|
46
|
|
|
return check_X_y(X, y, ensure_2d=True) |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
def _safe_refit(estimator, X, y, fit_params): |
50
|
|
|
if estimator.refit: |
51
|
|
|
estimator._refit(X, y, **fit_params) |
52
|
|
|
|
53
|
|
|
# make the wrapper itself expose n_features_in_ |
54
|
|
|
if hasattr(estimator.best_estimator_, "n_features_in_"): |
55
|
|
|
estimator.n_features_in_ = estimator.best_estimator_.n_features_in_ |
56
|
|
|
else: |
57
|
|
|
# Even when `refit=False` we must satisfy the contract |
58
|
|
|
estimator.n_features_in_ = X.shape[1] |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
# Replacement for `_deprecate_Xt_in_inverse_transform` |
62
|
|
|
if _SK_VERSION < version.parse("1.7"): |
63
|
|
|
# Still exists → re-export |
64
|
|
|
from sklearn.utils.deprecation import _deprecate_Xt_in_inverse_transform |
65
|
|
|
else: |
66
|
|
|
# Removed in 1.7 → provide drop-in replacement |
67
|
|
|
def _deprecate_Xt_in_inverse_transform( # noqa: N802 keep sklearn’s name |
68
|
|
|
X: Any | None, |
69
|
|
|
Xt: Any | None, |
70
|
|
|
): |
71
|
|
|
""" |
72
|
|
|
scikit-learn ≤1.6 accepted both the old `Xt` parameter and the new |
73
|
|
|
`X` parameter for `inverse_transform`. When only `Xt` is given we |
74
|
|
|
return `Xt` and raise a deprecation warning (same behaviour that |
75
|
|
|
scikit-learn had before 1.7); otherwise we return `X`. |
76
|
|
|
""" |
77
|
|
|
if Xt is not None: |
78
|
|
|
warnings.warn( |
79
|
|
|
"'Xt' was deprecated in scikit-learn 1.2 and has been " |
80
|
|
|
"removed in 1.7; use the positional argument 'X' instead.", |
81
|
|
|
FutureWarning, |
82
|
|
|
stacklevel=2, |
83
|
|
|
) |
84
|
|
|
return Xt |
85
|
|
|
return X |
86
|
|
|
|
87
|
|
|
|
88
|
|
|
# Replacement for `_check_method_params` |
89
|
|
|
try: |
90
|
|
|
from sklearn.utils.validation import _check_method_params # noqa: F401 |
91
|
|
|
except ImportError: # fallback for future releases |
92
|
|
|
|
93
|
|
|
def _check_method_params( # type: ignore[override] # noqa: N802 |
94
|
|
|
X, |
95
|
|
|
params: Dict[str, Any], |
96
|
|
|
): |
97
|
|
|
# passthrough – rely on estimator & indexable for validation |
98
|
|
|
return params |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
__all__ = [ |
102
|
|
|
"_deprecate_Xt_in_inverse_transform", |
103
|
|
|
"_check_method_params", |
104
|
|
|
] |
105
|
|
|
|