1
|
|
|
import copy |
2
|
|
|
import pytest |
3
|
|
|
import math |
4
|
|
|
import numpy as np |
5
|
|
|
import pandas as pd |
6
|
|
|
|
7
|
|
|
from hyperactive.optimizers import HillClimbingOptimizer |
8
|
|
|
from hyperactive.experiment import BaseExperiment, add_catch |
9
|
|
|
from hyperactive.search_config import SearchConfig |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
search_config = SearchConfig( |
13
|
|
|
x0=list(np.arange(-10, 10, 1)), |
14
|
|
|
) |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def test_catch_1(): |
18
|
|
|
class Experiment(BaseExperiment): |
19
|
|
|
@add_catch({TypeError: np.nan}) |
20
|
|
|
def objective_function(self, access): |
21
|
|
|
a = 1 + "str" |
22
|
|
|
|
23
|
|
|
return 0 |
24
|
|
|
|
25
|
|
|
experiment = Experiment() |
26
|
|
|
|
27
|
|
|
hyper = HillClimbingOptimizer() |
28
|
|
|
hyper.add_search( |
29
|
|
|
experiment, |
30
|
|
|
search_config, |
31
|
|
|
n_iter=100, |
32
|
|
|
) |
33
|
|
|
hyper.run() |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def test_catch_2(): |
37
|
|
|
class Experiment(BaseExperiment): |
38
|
|
|
@add_catch({ValueError: np.nan}) |
39
|
|
|
def objective_function(self, access): |
40
|
|
|
math.sqrt(-10) |
41
|
|
|
|
42
|
|
|
return 0 |
43
|
|
|
|
44
|
|
|
experiment = Experiment() |
45
|
|
|
|
46
|
|
|
hyper = HillClimbingOptimizer() |
47
|
|
|
hyper.add_search( |
48
|
|
|
experiment, |
49
|
|
|
search_config, |
50
|
|
|
n_iter=100, |
51
|
|
|
) |
52
|
|
|
hyper.run() |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
def test_catch_3(): |
56
|
|
|
class Experiment(BaseExperiment): |
57
|
|
|
@add_catch({ZeroDivisionError: np.nan}) |
58
|
|
|
def objective_function(self, access): |
59
|
|
|
x = 1 / 0 |
60
|
|
|
|
61
|
|
|
return 0 |
62
|
|
|
|
63
|
|
|
experiment = Experiment() |
64
|
|
|
|
65
|
|
|
hyper = HillClimbingOptimizer() |
66
|
|
|
hyper.add_search( |
67
|
|
|
experiment, |
68
|
|
|
search_config, |
69
|
|
|
n_iter=100, |
70
|
|
|
) |
71
|
|
|
hyper.run() |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def test_catch_all_0(): |
75
|
|
|
class Experiment(BaseExperiment): |
76
|
|
|
@add_catch( |
77
|
|
|
{ |
78
|
|
|
TypeError: np.nan, |
79
|
|
|
ValueError: np.nan, |
80
|
|
|
ZeroDivisionError: np.nan, |
81
|
|
|
} |
82
|
|
|
) |
83
|
|
|
def objective_function(self, access): |
84
|
|
|
a = 1 + "str" |
85
|
|
|
math.sqrt(-10) |
86
|
|
|
x = 1 / 0 |
87
|
|
|
|
88
|
|
|
return 0 |
89
|
|
|
|
90
|
|
|
experiment = Experiment() |
91
|
|
|
|
92
|
|
|
hyper = HillClimbingOptimizer() |
93
|
|
|
hyper.add_search( |
94
|
|
|
experiment, |
95
|
|
|
search_config, |
96
|
|
|
n_iter=100, |
97
|
|
|
) |
98
|
|
|
hyper.run() |
99
|
|
|
|
100
|
|
|
nan_ = hyper.search_data(experiment)["score"].values[0] |
101
|
|
|
|
102
|
|
|
assert math.isnan(nan_) |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
def test_catch_all_1(): |
106
|
|
|
catch_return = (np.nan, {"error": True}) |
107
|
|
|
|
108
|
|
|
class Experiment(BaseExperiment): |
109
|
|
|
@add_catch( |
110
|
|
|
{ |
111
|
|
|
TypeError: catch_return, |
112
|
|
|
ValueError: catch_return, |
113
|
|
|
ZeroDivisionError: catch_return, |
114
|
|
|
} |
115
|
|
|
) |
116
|
|
|
def objective_function(self, access): |
117
|
|
|
a = 1 + "str" |
118
|
|
|
math.sqrt(-10) |
119
|
|
|
x = 1 / 0 |
120
|
|
|
|
121
|
|
|
return 0, {"error": False} |
122
|
|
|
|
123
|
|
|
experiment = Experiment() |
124
|
|
|
|
125
|
|
|
hyper = HillClimbingOptimizer() |
126
|
|
|
hyper.add_search( |
127
|
|
|
experiment, |
128
|
|
|
search_config, |
129
|
|
|
n_iter=100, |
130
|
|
|
) |
131
|
|
|
hyper.run() |
132
|
|
|
|
133
|
|
|
nan_ = hyper.search_data(experiment)["score"].values[0] |
134
|
|
|
error_ = hyper.search_data(experiment)["error"].values[0] |
135
|
|
|
|
136
|
|
|
assert math.isnan(nan_) |
137
|
|
|
assert error_ == True |
138
|
|
|
|